train_utils.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# @author lucasmiranda42
# encoding: utf-8
# module deepof

"""

Simple utility functions used in deepof example scripts. These are not part of the main package

"""

11
from datetime import date, datetime
12
from kerastuner import BayesianOptimization, Hyperband
13
from kerastuner import HyperParameters
14
from kerastuner_tensorboard_logger import TensorBoardLogger
15
from tensorboard.plugins.hparams import api as hp
16
from typing import Tuple, Union, Any, List
17
18
19
20
21
22
23
import deepof.hypermodels
import deepof.model_utils
import numpy as np
import os
import pickle
import tensorflow as tf

24
25
26
27
28
# Ignore warning with no downstream effect
tf.get_logger().setLevel("ERROR")
tf.autograph.set_verbosity(0)


29
class CustomStopper(tf.keras.callbacks.EarlyStopping):
30
    """ Custom early stopping callback. Prevents the model from stopping before warmup is over """
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    def __init__(self, start_epoch, *args, **kwargs):
        super(CustomStopper, self).__init__(*args, **kwargs)
        self.start_epoch = start_epoch

    def get_config(self):  # pragma: no cover
        """Updates callback metadata"""

        config = super().get_config().copy()
        config.update({"start_epoch": self.start_epoch})
        return config

    def on_epoch_end(self, epoch, logs=None):
        if epoch > self.start_epoch:
            super().on_epoch_end(epoch, logs)


48
def load_hparams(hparams):
49
50
51
52
53
54
55
56
    """Loads hyperparameters from a custom dictionary pickled on disc.
    Thought to be used with the output of hyperparameter_tuning.py"""

    if hparams is not None:
        with open(hparams, "rb") as handle:
            hparams = pickle.load(handle)
    else:
        hparams = {
57
58
59
60
61
            "bidirectional_merge": "ave",
            "clipvalue": 1.0,
            "dense_activation": "relu",
            "dense_layers_per_branch": 1,
            "dropout_rate": 1e-3,
62
            "learning_rate": 1e-3,
63
64
65
            "units_conv": 160,
            "units_dense2": 120,
            "units_lstm": 300,
66
67
68
69
70
71
72
73
74
75
76
        }
    return hparams


def load_treatments(train_path):
    """Loads a dictionary containing the treatments per individual,
    to be loaded as metadata in the coordinates class"""
    try:
        with open(
            os.path.join(
                train_path,
77
                [i for i in os.listdir(train_path) if i.endswith(".pkl")][0],
78
79
80
81
82
83
84
85
86
87
88
            ),
            "rb",
        ) as handle:
            treatment_dict = pickle.load(handle)
    except IndexError:
        treatment_dict = None

    return treatment_dict


def get_callbacks(
lucas_miranda's avatar
lucas_miranda committed
89
90
91
92
    X_train: np.array,
    batch_size: int,
    cp: bool,
    variational: bool,
93
    phenotype_class: float,
lucas_miranda's avatar
lucas_miranda committed
94
95
    predictor: float,
    loss: str,
96
    logparam: dict = None,
97
    outpath: str = ".",
98
) -> List[Union[Any]]:
99
    """Generates callbacks for model training, including:
100
101
102
103
    - run_ID: run name, with coarse parameter details;
    - tensorboard_callback: for real-time visualization;
    - cp_callback: for checkpoint saving,
    - onecycle: for learning rate scheduling"""
104

105
    run_ID = "{}{}{}{}{}{}_{}".format(
106
        ("GMVAE" if variational else "AE"),
107
108
        ("Pred={}".format(predictor) if predictor > 0 and variational else ""),
        ("_Pheno={}".format(phenotype_class) if phenotype_class > 0 else ""),
109
        ("_loss={}".format(loss) if variational else ""),
110
111
        ("_encoding={}".format(logparam["encoding"]) if logparam is not None else ""),
        ("_k={}".format(logparam["k"]) if logparam is not None else ""),
112
        (datetime.now().strftime("%Y%m%d-%H%M%S")),
113
114
    )

115
    log_dir = os.path.abspath(os.path.join(outpath, "fit", run_ID))
116
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
117
118
119
        log_dir=log_dir,
        histogram_freq=1,
        profile_batch=2,
120
121
122
    )

    onecycle = deepof.model_utils.one_cycle_scheduler(
123
124
        X_train.shape[0] // batch_size * 250,
        max_rate=0.005,
125
126
    )

127
128
129
130
    callbacks = [run_ID, tensorboard_callback, onecycle]

    if cp:
        cp_callback = tf.keras.callbacks.ModelCheckpoint(
131
            os.path.join(outpath, "checkpoints", run_ID + "/cp-{epoch:04d}.ckpt"),
132
133
134
135
136
137
138
139
            verbose=1,
            save_best_only=False,
            save_weights_only=True,
            save_freq="epoch",
        )
        callbacks.append(cp_callback)

    return callbacks
140
141


142
def autoencoder_fitting(
143
    preprocessed_object: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    batch_size: int,
    encoding_size: int,
    hparams: dict,
    kl_warmup: int,
    log_history: bool,
    log_hparams: bool,
    loss: str,
    mmd_warmup,
    montecarlo_kl,
    n_components,
    output_path,
    phenotype_class,
    predictor: float,
    pretrained: str,
    save_checkpoints: bool,
159
    save_weights: bool,
160
    variational: bool,
161
):
162
163
    """Implementation function for deepof.data.coordinates.deep_unsupervised_embedding"""

164
    # Load data
165
166
167
168
169
    X_train, y_train, X_val, y_val = preprocessed_object

    # To avoid stability issues
    tf.keras.backend.clear_session()

170
    # Defines what to log on tensorboard (useful for trying out different models)
171

172
173
    logparam = {
        "encoding": encoding_size,
174
        "k": n_components,
175
176
177
178
179
        "loss": loss,
    }
    if phenotype_class:
        logparam["pheno_weight"] = phenotype_class

180
    # Load callbacks
181
    run_ID, *cbacks = get_callbacks(
182
183
184
185
        X_train=X_train,
        batch_size=batch_size,
        cp=save_checkpoints,
        variational=variational,
186
        phenotype_class=phenotype_class,
187
188
189
190
191
        predictor=predictor,
        loss=loss,
        logparam=logparam,
        outpath=output_path,
    )
192
193
    if not log_history:
        cbacks = cbacks[1:]
194

195
    # Logs hyperparameters to tensorboard
196
197
    if log_hparams:
        logparams = [
198
            hp.HParam(
199
200
201
202
                "encoding",
                hp.Discrete([2, 4, 6, 8, 12, 16]),
                display_name="encoding",
                description="encoding size dimensionality",
203
            ),
204
205
206
207
208
209
210
211
212
213
214
            hp.HParam(
                "k",
                hp.IntInterval(min_value=1, max_value=25),
                display_name="k",
                description="cluster_number",
            ),
            hp.HParam(
                "loss",
                hp.Discrete(["ELBO", "MMD", "ELBO+MMD"]),
                display_name="loss function",
                description="loss function",
215
216
217
            ),
        ]

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        rec = "reconstruction_" if phenotype_class else ""
        metrics = [
            hp.Metric("val_{}mae".format(rec), display_name="val_{}mae".format(rec)),
            hp.Metric("val_{}mse".format(rec), display_name="val_{}mse".format(rec)),
        ]
        if phenotype_class:
            logparams.append(
                hp.HParam(
                    "pheno_weight",
                    hp.RealInterval(min_value=0.0, max_value=1000.0),
                    display_name="pheno weight",
                    description="weight applied to phenotypic classifier from the latent space",
                )
            )
            metrics += [
                hp.Metric(
                    "phenotype_prediction_accuracy",
                    display_name="phenotype_prediction_accuracy",
                ),
                hp.Metric(
                    "phenotype_prediction_auc",
                    display_name="phenotype_prediction_auc",
                ),
            ]

        with tf.summary.create_file_writer(
            os.path.join(output_path, "hparams", run_ID)
        ).as_default():
            hp.hparams_config(
                hparams=logparams,
                metrics=metrics,
            )
250

251
    # Build models
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    if not variational:
        encoder, decoder, ae = deepof.models.SEQ_2_SEQ_AE(
            ({} if hparams is None else hparams)
        ).build(X_train.shape)
        return_list = (encoder, decoder, ae)

    else:
        (
            encoder,
            generator,
            grouper,
            ae,
            kl_warmup_callback,
            mmd_warmup_callback,
        ) = deepof.models.SEQ_2_SEQ_GMVAE(
            architecture_hparams=({} if hparams is None else hparams),
            batch_size=batch_size,
            compile_model=True,
            encoding=encoding_size,
            kl_warmup_epochs=kl_warmup,
            loss=loss,
            mmd_warmup_epochs=mmd_warmup,
            montecarlo_kl=montecarlo_kl,
            neuron_control=False,
            number_of_components=n_components,
            overlap_loss=False,
            phenotype_prediction=phenotype_class,
            predictor=predictor,
        ).build(
            X_train.shape
        )
        return_list = (encoder, generator, grouper, ae)

    if pretrained:
286
        # If pretrained models are specified, load weights and return
287
288
289
290
291
292
293
294
295
296
297
298
299
        ae.load_weights(pretrained)
        return return_list

    else:
        if not variational:

            ae.fit(
                x=X_train,
                y=X_train,
                epochs=35,
                batch_size=batch_size,
                verbose=1,
                validation_data=(X_val, X_val),
300
301
                callbacks=cbacks
                + [
302
303
304
305
                    CustomStopper(
                        monitor="val_loss",
                        patience=5,
                        restore_best_weights=True,
306
                        start_epoch=max(kl_warmup, mmd_warmup),
307
308
309
310
                    ),
                ],
            )

311
312
313
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

314
315
        else:

316
            callbacks_ = cbacks + [
317
318
319
320
                CustomStopper(
                    monitor="val_loss",
                    patience=5,
                    restore_best_weights=True,
321
                    start_epoch=max(kl_warmup, mmd_warmup),
322
323
324
                ),
            ]

325
            if "ELBO" in loss and kl_warmup > 0:
326
327
                # noinspection PyUnboundLocalVariable
                callbacks_.append(kl_warmup_callback)
328
            if "MMD" in loss and mmd_warmup > 0:
329
330
331
                # noinspection PyUnboundLocalVariable
                callbacks_.append(mmd_warmup_callback)

332
333
334
335
336
337
338
            Xs, ys = [X_train], [X_train]
            Xvals, yvals = [X_val], [X_val]

            if predictor > 0.0:
                Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
                Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

339
            if phenotype_class > 0.0:
340
341
342
                ys += [y_train]
                yvals += [y_val]

343
            ae.fit(
344
345
                x=Xs,
                y=ys,
346
                epochs=2,
347
348
349
350
351
352
353
354
355
                batch_size=batch_size,
                verbose=1,
                validation_data=(
                    Xvals,
                    yvals,
                ),
                callbacks=callbacks_,
            )

356
357
358
            if save_weights:
                ae.save_weights("{}_final_weights.h5".format(run_ID))

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            if log_hparams:
                # noinspection PyUnboundLocalVariable
                def tensorboard_metric_logging(run_dir: str, hpms: Any):
                    output = gmvaep.predict(X_val)
                    if phenotype_class or predictor:
                        reconstruction = output[0]
                        prediction = output[1]
                        pheno = output[-1]
                    else:
                        reconstruction = output

                    with tf.summary.create_file_writer(run_dir).as_default():
                        hp.hparams(hpms)  # record the values used in this trial
                        val_mae = tf.reduce_mean(
                            tf.keras.metrics.mean_absolute_error(X_val, reconstruction)
374
                        )
375
376
                        val_mse = tf.reduce_mean(
                            tf.keras.metrics.mean_squared_error(X_val, reconstruction)
377
                        )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                        tf.summary.scalar("val_{}mae".format(rec), val_mae, step=1)
                        tf.summary.scalar("val_{}mse".format(rec), val_mse, step=1)

                        if predictor:
                            pred_mae = tf.reduce_mean(
                                tf.keras.metrics.mean_absolute_error(X_val, prediction)
                            )
                            pred_mse = tf.reduce_mean(
                                tf.keras.metrics.mean_squared_error(X_val, prediction)
                            )
                            tf.summary.scalar(
                                "val_prediction_mae".format(rec), pred_mae, step=1
                            )
                            tf.summary.scalar(
                                "val_prediction_mse".format(rec), pred_mse, step=1
                            )

                        if phenotype_class:
                            pheno_acc = tf.keras.metrics.binary_accuracy(
                                y_val, tf.squeeze(pheno)
                            )
                            pheno_auc = roc_auc_score(y_val, pheno)

                            tf.summary.scalar(
                                "phenotype_prediction_accuracy", pheno_acc, step=1
                            )
                            tf.summary.scalar(
                                "phenotype_prediction_auc", pheno_auc, step=1
                            )

                # Logparams to tensorboard
                tensorboard_metric_logging(
                    os.path.join(output_path, "hparams", run_ID),
                    logparam,
                )
413

414
415
416
    return return_list


417
def tune_search(
418
    data: List[np.array],
419
    encoding_size: int,
420
421
    hypertun_trials: int,
    hpt_type: str,
422
423
    hypermodel: str,
    k: int,
424
    kl_warmup_epochs: int,
425
    loss: str,
426
    mmd_warmup_epochs: int,
427
    overlap_loss: float,
428
    phenotype_class: float,
429
430
    predictor: float,
    project_name: str,
431
    callbacks: List,
432
    n_epochs: int = 30,
433
    n_replicas: int = 1,
434
) -> Union[bool, Tuple[Any, Any]]:
435
436
    """Define the search space using keras-tuner and bayesian optimization

437
438
439
440
441
442
443
444
445
446
447
    Parameters:
        - train (np.array): dataset to train the model on
        - test (np.array): dataset to validate the model on
        - hypertun_trials (int): number of Bayesian optimization iterations to run
        - hpt_type (str): specify one of Bayesian Optimization (bayopt) and Hyperband (hyperband)
        - hypermodel (str): hypermodel to load. Must be one of S2SAE (plain autoencoder)
        or S2SGMVAE (Gaussian Mixture Variational autoencoder).
        - k (int) number of components of the Gaussian Mixture
        - loss (str): one of [ELBO, MMD, ELBO+MMD]
        - overlap_loss (float): assigns as weight to an extra loss term which
        penalizes overlap between GM components
448
        - phenotype_class (float): adds an extra regularizing neural network to the model,
449
450
451
452
453
454
455
456
457
458
459
460
        which tries to predict the phenotype of the animal from which the sequence comes
        - predictor (float): adds an extra regularizing neural network to the model,
        which tries to predict the next frame from the current one
        - project_name (str): ID of the current run
        - callbacks (list): list of callbacks for the training loop
        - n_epochs (int): optional. Number of epochs to train each run for
        - n_replicas (int): optional. Number of replicas per parameter set. Higher values
         will yield more robust results, but will affect performance severely

    Returns:
        - best_hparams (dict): dictionary with the best retrieved hyperparameters
        - best_run (tf.keras.Model): trained instance of the best model found
461
462
463

    """

464
465
    X_train, y_train, X_val, y_val = data

466
467
468
469
    assert hpt_type in ["bayopt", "hyperband"], (
        "Invalid hyperparameter tuning framework. " "Select one of bayopt and hyperband"
    )

lucas_miranda's avatar
lucas_miranda committed
470
    if hypermodel == "S2SAE":  # pragma: no cover
471
        assert (
472
            predictor == 0.0 and phenotype_class == 0.0
473
        ), "Prediction branches are only available for variational models. See documentation for more details"
474
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_AE(input_shape=X_train.shape)
475
476
477

    elif hypermodel == "S2SGMVAE":
        hypermodel = deepof.hypermodels.SEQ_2_SEQ_GMVAE(
478
            input_shape=X_train.shape,
479
            encoding=encoding_size,
480
            kl_warmup_epochs=kl_warmup_epochs,
481
            loss=loss,
482
            mmd_warmup_epochs=mmd_warmup_epochs,
483
            number_of_components=k,
484
            overlap_loss=overlap_loss,
485
            phenotype_predictor=phenotype_class,
486
            predictor=predictor,
487
        )
lucas_miranda's avatar
lucas_miranda committed
488

489
490
491
    else:
        return False

492
493
494
495
496
497
498
499
500
501
502
503
504
505
    hpt_params = {
        "hypermodel": hypermodel,
        "executions_per_trial": n_replicas,
        "logger": TensorBoardLogger(metrics=["val_mae"], logdir="./logs/hparams"),
        "objective": "val_mae",
        "project_name": project_name,
        "seed": 42,
        "tune_new_entries": True,
    }

    if hpt_type == "hyperband":
        tuner = Hyperband(
            directory="HyperBandx_{}_{}".format(loss, str(date.today())),
            max_epochs=hypertun_trials,
506
            hyperband_iterations=3,
lucas_miranda's avatar
lucas_miranda committed
507
            factor=2,
508
509
510
511
512
513
514
515
            **hpt_params
        )
    else:
        tuner = BayesianOptimization(
            directory="BayOpt_{}_{}".format(loss, str(date.today())),
            max_trials=hypertun_trials,
            **hpt_params
        )
516
517
518

    print(tuner.search_space_summary())

519
520
521
522
523
524
525
    Xs, ys = [X_train], [X_train]
    Xvals, yvals = [X_val], [X_val]

    if predictor > 0.0:
        Xs, ys = X_train[:-1], [X_train[:-1], X_train[1:]]
        Xvals, yvals = X_val[:-1], [X_val[:-1], X_val[1:]]

526
    if phenotype_class > 0.0:
527
528
529
        ys += [y_train]
        yvals += [y_val]

530
    tuner.search(
531
532
        Xs,
        ys,
533
        epochs=n_epochs,
534
        validation_data=(Xvals, yvals),
535
536
        verbose=1,
        batch_size=256,
lucas_miranda's avatar
lucas_miranda committed
537
        callbacks=callbacks,
538
539
540
541
542
    )

    best_hparams = tuner.get_best_hyperparameters(num_trials=1)[0]
    best_run = tuner.hypermodel.build(best_hparams)

lucas_miranda's avatar
lucas_miranda committed
543
544
    print(tuner.results_summary())

545
    return best_hparams, best_run