diff --git a/resolve/likelihood.py b/resolve/likelihood.py index 54c9ed462895fd652a9118a32abd05cbb5cd7967..642c71597fb9155453de1ae3944b58aa69f7e72e 100644 --- a/resolve/likelihood.py +++ b/resolve/likelihood.py @@ -55,7 +55,7 @@ def _build_gauss_lh_nres(op, mean, invcov): my_assert_isinstance(mean, invcov, (ift.Field, ift.MultiField)) my_asserteq(op.target, mean.domain, invcov.domain) - lh = ift.GaussianEnergy(mean=mean, inverse_covariance=ift.makeOp(invcov)) @ op + lh = ift.GaussianEnergy(mean=mean, inverse_covariance=ift.makeOp(invcov, sampling_dtype=mean.dtype)) @ op return _Likelihood(lh, mean, lambda x: ift.makeOp(invcov), op) diff --git a/resolve/minimization.py b/resolve/minimization.py index 32ef0a7207e3886ff278bf1ae867b495ebffe6d1..dbf004c5b0dc23bfedbe40316820f3e1ef0b9bc0 100644 --- a/resolve/minimization.py +++ b/resolve/minimization.py @@ -28,7 +28,7 @@ class Minimization: else: my_assert(n_samples > 0) dct = { - "mean": position, + "position": position, "hamiltonian": operator, "n_samples": n_samples, "minimizer_sampling": None, @@ -38,7 +38,7 @@ class Minimization: "comm": comm, "nanisinf": True, } - self._e = ift.SampledKL(**dct) + self._e = ift.SampledKLEnergy(**dct) self._n, self._m = dct["n_samples"], dct["mirror_samples"] def minimize(self, minimizer):