nifty_gridder.cc 35.5 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
 *  This file is part of nifty_gridder.
 *
 *  nifty_gridder is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  nifty_gridder is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
Martin Reinecke's avatar
Martin Reinecke committed
15
 *  along with nifty_gridder; if not, write to the Free Software
Martin Reinecke's avatar
Martin Reinecke committed
16
17
18
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

Martin Reinecke's avatar
Martin Reinecke committed
19
20
21
/* Copyright (C) 2019 Max-Planck-Society
   Author: Martin Reinecke */

Martin Reinecke's avatar
import  
Martin Reinecke committed
22
23
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
Martin Reinecke's avatar
Martin Reinecke committed
24

Martin Reinecke's avatar
Martin Reinecke committed
25
#include "gridder_cxx.h"
Martin Reinecke's avatar
import  
Martin Reinecke committed
26
27

using namespace std;
Martin Reinecke's avatar
Martin Reinecke committed
28
using namespace gridder;
Martin Reinecke's avatar
import  
Martin Reinecke committed
29
30
31
32
33

namespace py = pybind11;

namespace {

Martin Reinecke's avatar
Martin Reinecke committed
34
35
auto None = py::none();

36
template<typename T>
Martin Reinecke's avatar
updates    
Martin Reinecke committed
37
  using pyarr = py::array_t<T, 0>;
Martin Reinecke's avatar
import  
Martin Reinecke committed
38

39
40
41
42
43
44
45
46
47
48
template<typename T> bool isPytype(const py::array &arr)
  {
  auto t1=arr.dtype();
  auto t2=pybind11::dtype::of<T>();
  auto k1=t1.kind();
  auto k2=t2.kind();
  auto s1=t1.itemsize();
  auto s2=t2.itemsize();
  return (k1==k2)&&(s1==s2);
  }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
49
50
51
52
template<typename T> pyarr<T> getPyarr(const py::array &arr, const string &name)
  {
  auto t1=arr.dtype();
  auto t2=pybind11::dtype::of<T>();
53
54
55
56
57
58
59
  auto k1=t1.kind();
  auto k2=t2.kind();
  auto s1=t1.itemsize();
  auto s2=t2.itemsize();
  myassert((k1==k2)&&(s1==s2),
    "type mismatch for array '", name, "': expected '", k2, s2,
    "', but got '", k1, s1, "'.");
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
60
61
62
  return arr.cast<pyarr<T>>();
  }

Martin Reinecke's avatar
Martin Reinecke committed
63
64
template<typename T> pyarr<T> makeArray(const vector<size_t> &shape)
  { return pyarr<T>(shape); }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
65

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
66
void checkArray(const py::array &arr, const string &aname,
Martin Reinecke's avatar
merge    
Martin Reinecke committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  const vector<size_t> &shape)
  {
  if (size_t(arr.ndim())!=shape.size())
    {
    cerr << "Array '" << aname << "' has " << arr.ndim() << " dimensions; "
            "expected " << shape.size() << endl;
    throw runtime_error("bad dimensionality");
    }
  for (size_t i=0; i<shape.size(); ++i)
    if ((shape[i]!=0) && (size_t(arr.shape(i))!=shape[i]))
      {
      cerr << "Dimension " << i << " of array '" << aname << "' has size "
           << arr.shape(i) << "; expected " << shape[i] << endl;
      throw runtime_error("bad array size");
      }
  }

Martin Reinecke's avatar
Martin Reinecke committed
84
template<typename T> pyarr<T> provideArray(const py::object &in,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
85
  const string &name, const vector<size_t> &shape)
Martin Reinecke's avatar
merge    
Martin Reinecke committed
86
  {
87
  if (in.is_none())
Martin Reinecke's avatar
merge    
Martin Reinecke committed
88
89
90
91
92
93
94
95
    {
    auto tmp_ = makeArray<T>(shape);
    size_t sz = size_t(tmp_.size());
    auto tmp = tmp_.mutable_data();
    for (size_t i=0; i<sz; ++i)
      tmp[i] = T(0);
    return tmp_;
    }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
96
97
  auto tmp_ = getPyarr<T>(in.cast<py::array>(), name);
  checkArray(tmp_, name, shape);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
98
99
100
  return tmp_;
  }

Martin Reinecke's avatar
Martin Reinecke committed
101
template<typename T> pyarr<T> providePotentialArray(const py::object &in,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
102
  const string &name, const vector<size_t> &shape)
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
  {
  if (in.is_none())
    return makeArray<T>(vector<size_t>(shape.size(), 0));
Martin Reinecke's avatar
Martin Reinecke committed
106
  return getPyarr<T>(in.cast<py::array>(), name);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
107
108
  }

Martin Reinecke's avatar
Martin Reinecke committed
109
template<size_t ndim, typename T> mav<T,ndim> make_mav(pyarr<T> &in)
Martin Reinecke's avatar
Martin Reinecke committed
110
  {
Martin Reinecke's avatar
Martin Reinecke committed
111
112
113
114
  myassert(ndim==in.ndim(), "dimension mismatch");
  array<size_t,ndim> dims;
  array<ptrdiff_t,ndim> str;
  for (size_t i=0; i<ndim; ++i)
Martin Reinecke's avatar
Martin Reinecke committed
115
    {
Martin Reinecke's avatar
Martin Reinecke committed
116
117
118
    dims[i]=in.shape(i);
    str[i]=in.strides(i)/sizeof(T);
    myassert(str[i]*ptrdiff_t(sizeof(T))==in.strides(i), "weird strides");
Martin Reinecke's avatar
Martin Reinecke committed
119
    }
Martin Reinecke's avatar
Martin Reinecke committed
120
  return mav<T, ndim>(in.mutable_data(),dims,str);
Martin Reinecke's avatar
Martin Reinecke committed
121
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
122
template<size_t ndim, typename T> const_mav<T,ndim> make_const_mav(const pyarr<T> &in)
Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
126
127
128
129
130
131
132
  {
  myassert(ndim==in.ndim(), "dimension mismatch");
  array<size_t,ndim> dims;
  array<ptrdiff_t,ndim> str;
  for (size_t i=0; i<ndim; ++i)
    {
    dims[i]=in.shape(i);
    str[i]=in.strides(i)/sizeof(T);
    myassert(str[i]*ptrdiff_t(sizeof(T))==in.strides(i), "weird strides");
    }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
133
  return const_mav<T, ndim>(in.data(),dims,str);
Martin Reinecke's avatar
Martin Reinecke committed
134
  }
Martin Reinecke's avatar
Martin Reinecke committed
135

Martin Reinecke's avatar
Martin Reinecke committed
136
constexpr auto PyBaselines_DS = R"""(
137
138
139
140
141
142
143
144
145
Class storing UVW coordinates and channel information.

Parameters
==========
coord: np.array((nrows, 3), dtype=np.float)
    u, v and w coordinates for each row
freq: np.array((nchannels,), dtype=np.float)
    frequency for each individual channel (in Hz)
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
146
class PyBaselines: public Baselines
Martin Reinecke's avatar
Martin Reinecke committed
147
148
  {
  public:
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
149
150
151
    using Baselines::Baselines;
    template<typename T> PyBaselines(const pyarr<T> &coord, const pyarr<T> &freq)
      : Baselines(make_const_mav<2>(coord), make_const_mav<1>(freq))
Martin Reinecke's avatar
Martin Reinecke committed
152
      {}
Martin Reinecke's avatar
Martin Reinecke committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    static constexpr auto ms2vis_DS = R"""(
    Extracts visibility data from a measurement for the provided indices.

    Parameters
    ==========
    ms: np.array((nrows, nchannels), dtype=np.complex)
        the measurement set's visibility data
    idx: np.array((nvis,), dtype=np.uint32)
        the indices to be extracted

    Returns
    =======
    np.array((nvis,), dtype=np.complex)
        The visibility data for the index array
    )""";
169

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
170
    template<typename T> pyarr<T> effectiveuvw(const pyarr<uint32_t> &idx_) const
Martin Reinecke's avatar
Martin Reinecke committed
171
      {
172
      size_t nvis = size_t(idx_.shape(0));
Martin Reinecke's avatar
Martin Reinecke committed
173
      auto idx=make_const_mav<1>(idx_);
174
      auto res_=makeArray<T>({nvis, 3});
Martin Reinecke's avatar
Martin Reinecke committed
175
      auto res=make_mav<2>(res_);
Martin Reinecke's avatar
Martin Reinecke committed
176
177
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
178
      Baselines::effectiveUVW(idx,res);
Martin Reinecke's avatar
Martin Reinecke committed
179
      }
180
      return res_;
Martin Reinecke's avatar
Martin Reinecke committed
181
      }
182

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
183
    template<typename T> pyarr<T> ms2vis(const pyarr<T> &ms_,
Martin Reinecke's avatar
Martin Reinecke committed
184
      const pyarr<uint32_t> &idx_, size_t nthreads) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
185
      {
Martin Reinecke's avatar
Martin Reinecke committed
186
      auto idx=make_const_mav<1>(idx_);
Martin Reinecke's avatar
Martin Reinecke committed
187
      size_t nvis = size_t(idx.shape(0));
Martin Reinecke's avatar
Martin Reinecke committed
188
      auto ms = make_const_mav<2>(ms_);
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
189
      auto res=makeArray<T>({nvis});
Martin Reinecke's avatar
Martin Reinecke committed
190
      auto vis = make_mav<1>(res);
Martin Reinecke's avatar
Martin Reinecke committed
191
192
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
193
      Baselines::ms2vis(ms, idx, vis, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
194
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
195
196
197
      return res;
      }

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    static constexpr auto vis2ms_DS = R"""(
    Produces a new MS with the provided visibilities set.

    Parameters
    ==========
    vis: np.array((nvis,), dtype=np.complex)
        The visibility data for the index array
    idx: np.array((nvis,), dtype=np.uint32)
        the indices to be inserted
    ms_in: np.array((nrows, nchannels), dtype=np.complex), optional
        input measurement set to which the visibilities are added.

    Returns
    =======
    np.array((nrows, nchannels), dtype=np.complex)
        the measurement set's visibility data (0 where not covered by idx)
    )""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
215
    template<typename T> pyarr<T> vis2ms(const pyarr<T> &vis_,
Martin Reinecke's avatar
Martin Reinecke committed
216
      const pyarr<uint32_t> &idx_, py::object &ms_in, size_t nthreads) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
217
      {
Martin Reinecke's avatar
Martin Reinecke committed
218
219
      auto vis=make_const_mav<1>(vis_);
      auto idx=make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
220
      auto res = provideArray<T>(ms_in, "ms_in", {nrows, nchan});
Martin Reinecke's avatar
Martin Reinecke committed
221
      auto ms = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
222
223
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
224
      Baselines::vis2ms(vis, idx, ms, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
225
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
226
227
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
228
229
  };

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
constexpr auto grid2dirty_DS = R"""(
Converts from UV grid to dirty image (FFT, cropping, correction)

Parameters
==========
grid: np.array((nu, nv), dtype=np.float64)
    gridded UV data

Returns
=======
nd.array((nxdirty, nydirty), dtype=np.float64)
    the dirty image
)""";

constexpr auto dirty2grid_DS = R"""(
Converts from a dirty image to a UV grid (correction, padding, FFT)

Parameters
==========
dirty: nd.array((nxdirty, nydirty), dtype=np.float64)
    the dirty image

Returns
=======
np.array((nu, nv), dtype=np.float64)
    gridded UV data
)""";

Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
constexpr auto apply_taper_DS = R"""(
Applies the taper (or its inverse) to an image

Parameters
==========
img: nd.array((nxdirty, nydirty), dtype=np.float64)
    the image
divide: bool
    if True, the routine dividex by the taper, otherwise it multiplies by it

Returns
=======
np.array((nxdirty, nydirty), dtype=np.float64)
    the image with the taper applied
)""";

Martin Reinecke's avatar
Martin Reinecke committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
constexpr auto apply_wscreen_DS = R"""(
Applies the w screen to an image

Parameters
==========
dirty: nd.array((nxdirty, nydirty), dtype=np.complex128)
    the image
w : float
    the w value to use
adjoint: bool
    if True, apply the complex conjugate of the w screen

Returns
=======
np.array((nxdirty, nydirty), dtype=np.complex128)
    the image with the w screen applied
)""";

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
constexpr auto GridderConfig_DS = R"""(
Class storing information related to the gridding/degridding process.

Parameters
==========
nxdirty: int
    x resolution of the dirty image; must be even
nydirty: int
    y resolution of the dirty image; must be even
epsilon: float
    required accuracy for the gridding/degridding step
    Must be >= 2e-13.
pixsize_x: float
    Pixel size in x direction (radians)
pixsize_y: float
    Pixel size in y direction (radians)
Martin Reinecke's avatar
Martin Reinecke committed
308
309
nthreads: int
    the number of threads to use for all calculations involving this object.
310
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
311
class PyGridderConfig: public GridderConfig
Martin Reinecke's avatar
Martin Reinecke committed
312
313
  {
  public:
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
314
    using GridderConfig::GridderConfig;
Martin Reinecke's avatar
Martin Reinecke committed
315
    PyGridderConfig(size_t nxdirty, size_t nydirty, double epsilon,
Martin Reinecke's avatar
Martin Reinecke committed
316
      double pixsize_x, double pixsize_y, size_t nthreads)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
317
318
319
      : GridderConfig(nxdirty, nydirty, epsilon, pixsize_x, pixsize_y, nthreads) {}

    template<typename T> pyarr<T> apply_taper(const pyarr<T> &img, bool divide) const
Martin Reinecke's avatar
Martin Reinecke committed
320
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
321
      auto res = makeArray<T>({nx_dirty, ny_dirty});
Martin Reinecke's avatar
Martin Reinecke committed
322
323
      auto img2 = make_const_mav<2>(img);
      auto res2 = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
324
325
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
326
      GridderConfig::apply_taper(img2, res2, divide);
Martin Reinecke's avatar
Martin Reinecke committed
327
      }
Martin Reinecke's avatar
Martin Reinecke committed
328
329
      return res;
      }
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
330
    template<typename T> pyarr<T> grid2dirty(const pyarr<T> &grid) const
331
332
333
334
335
336
      {
      auto res = makeArray<T>({nx_dirty, ny_dirty});
      auto grid2=make_const_mav<2>(grid);
      auto res2=make_mav<2>(res);
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
337
      GridderConfig::grid2dirty(grid2,res2);
338
339
340
      }
      return res;
      }
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
341
    template<typename T> pyarr<complex<T>> grid2dirty_c(const pyarr<complex<T>> &grid) const
Martin Reinecke's avatar
Martin Reinecke committed
342
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
343
      auto res = makeArray<complex<T>>({nx_dirty, ny_dirty});
Martin Reinecke's avatar
Martin Reinecke committed
344
345
      auto grid2=make_const_mav<2>(grid);
      auto res2=make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
346
347
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
348
      GridderConfig::grid2dirty_c(grid2,res2);
Martin Reinecke's avatar
Martin Reinecke committed
349
      }
350
351
      return res;
      }
352

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
353
    template<typename T> pyarr<T> dirty2grid(const pyarr<T> &dirty) const
354
355
356
357
358
359
      {
      auto dirty2 = make_const_mav<2>(dirty);
      auto grid = makeArray<T>({nu, nv});
      auto grid2=make_mav<2>(grid);
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
360
      GridderConfig::dirty2grid(dirty2, grid2);
361
362
363
      }
      return grid;
      }
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
364
    template<typename T> pyarr<complex<T>> dirty2grid_c(const pyarr<complex<T>> &dirty) const
365
      {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
366
367
368
      auto dirty2 = make_const_mav<2>(dirty);
      auto grid = makeArray<complex<T>>({nu, nv});
      auto grid2=make_mav<2>(grid);
Martin Reinecke's avatar
Martin Reinecke committed
369
370
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
371
      GridderConfig::dirty2grid_c(dirty2, grid2);
Martin Reinecke's avatar
Martin Reinecke committed
372
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
373
      return grid;
374
      }
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
375
    template<typename T> pyarr<complex<T>> apply_wscreen(const pyarr<complex<T>> &dirty, double w, bool adjoint) const
Martin Reinecke's avatar
test1    
Martin Reinecke committed
376
      {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
377
378
379
      auto dirty2 = make_const_mav<2>(dirty);
      auto res = makeArray<complex<T>>({nx_dirty, ny_dirty});
      auto res2 = make_mav<2>(res);
Martin Reinecke's avatar
test1    
Martin Reinecke committed
380
381
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
382
      GridderConfig::apply_wscreen(dirty2, res2, w, adjoint);
383
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
384
      return res;
385
      }
Martin Reinecke's avatar
Martin Reinecke committed
386
387
  };

Martin Reinecke's avatar
import  
Martin Reinecke committed
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
constexpr auto vis2grid_c_DS = R"""(
Grids visibilities onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
vis: np.array((nvis,), dtype=np.complex)
    The visibility data for the index array
grid_in: np.array((nu,nv), dtype=np.complex128), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
405
406
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
407
408
409
410
411
412

Returns
=======
np.array((nu,nv), dtype=np.complex128):
    the gridded visibilities
)""";
Martin Reinecke's avatar
updates    
Martin Reinecke committed
413
template<typename T> pyarr<complex<T>> Pyvis2grid_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
414
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
415
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &vis_,
Martin Reinecke's avatar
Martin Reinecke committed
416
  py::object &grid_in, const py::object &wgt_)
417
  {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
418
419
420
  auto vis2 = make_const_mav<1>(vis_);
  size_t nvis = vis2.shape(0);
  auto idx2 = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
421
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
422
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
423
  auto res = provideArray<complex<T>>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
424
  auto grid = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
425
426
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
427
  vis2grid_c<T>(baselines, gconf, idx2, vis2, grid, wgt2);
Martin Reinecke's avatar
Martin Reinecke committed
428
  }
429
430
431
  return res;
  }

432
433
434
435
436
437
438
439
440
441
442
443
444
445
constexpr auto vis2grid_DS = R"""(
Grids visibilities onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
vis: np.array((nvis,), dtype=np.complex)
    The visibility data for the index array
Martin Reinecke's avatar
Martin Reinecke committed
446
447
grid_in: np.array((nu,nv), dtype=np.float64), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
448
449
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
450
451
452
453
454
455

Returns
=======
np.array((nu,nv), dtype=np.float64):
    the gridded visibilities (made real by making use of Hermitian symmetry)
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
456
457
template<typename T> pyarr<T> Pyvis2grid(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
458
459
460
  const pyarr<complex<T>> &vis_, py::object &grid_in, const py::object &wgt_)
  {
  auto tmp=Pyvis2grid_c(baselines, gconf, idx_, vis_, None, wgt_);
Martin Reinecke's avatar
Martin Reinecke committed
461
  auto grd=provideArray<T>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
Martin Reinecke's avatar
Martin Reinecke committed
462
463
  {
  py::gil_scoped_release release;
464
  gridder::detail::complex2hartley(make_const_mav<2>(tmp), make_mav<2>(grd), gconf.Nthreads());
Martin Reinecke's avatar
Martin Reinecke committed
465
  }
466
467
  return grd;
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
constexpr auto ms2grid_c_DS = R"""(
Grids measurement set data onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
ms: np.array((nrows, nchannels), dtype=np.complex128)
    the measurement set.
grid_in: np.array((nu,nv), dtype=np.complex128), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
485
486
wgt: np.array((nrows, nchannels), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
487
488
489
490
491
492

Returns
=======
np.array((nu,nv), dtype=np.complex128):
    the gridded visibilities
)""";
Martin Reinecke's avatar
updates    
Martin Reinecke committed
493
template<typename T> pyarr<complex<T>> Pyms2grid_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
494
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
495
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &ms_,
Martin Reinecke's avatar
Martin Reinecke committed
496
  py::object &grid_in, const py::object &wgt_)
Martin Reinecke's avatar
merge    
Martin Reinecke committed
497
498
499
  {
  auto nrows = baselines.Nrows();
  auto nchan = baselines.Nchannels();
Martin Reinecke's avatar
updates    
Martin Reinecke committed
500
501
  auto ms2 = make_const_mav<2>(ms_);
  auto idx2 = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
502
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
503
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
504
  auto res = provideArray<complex<T>>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
505
  auto grid = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
506
507
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
508
  ms2grid_c<T>(baselines, gconf, idx2, ms2, grid, wgt2);
Martin Reinecke's avatar
Martin Reinecke committed
509
  }
Martin Reinecke's avatar
merge    
Martin Reinecke committed
510
511
512
  return res;
  }

513
template<typename T> pyarr<T> Pyms2grid(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
514
  const PyBaselines &baselines, const PyGridderConfig &gconf,
515
516
517
518
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &ms_,
  py::object &grid_in, const py::object &wgt_)
  {
  auto tmp = Pyms2grid_c(baselines, gconf, idx_, ms_, None, wgt_);
Martin Reinecke's avatar
Martin Reinecke committed
519
  auto res_ = provideArray<T>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
520
  auto res = make_mav<2>(res_);
Martin Reinecke's avatar
Martin Reinecke committed
521
522
  {
  py::gil_scoped_release release;
523
  gridder::detail::complex2hartley(make_const_mav<2>(tmp), res, gconf.Nthreads());
Martin Reinecke's avatar
Martin Reinecke committed
524
  }
525
526
527
  return res_;
  }

Martin Reinecke's avatar
updates    
Martin Reinecke committed
528
template<typename T> pyarr<complex<T>> Pygrid2vis_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
529
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
530
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &grid_,
Martin Reinecke's avatar
Martin Reinecke committed
531
  const py::object &wgt_)
532
  {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
533
534
535
  auto grid2 = make_const_mav<2>(grid_);
  auto idx2 = make_const_mav<1>(idx_);
  size_t nvis = idx2.shape(0);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
536
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
537
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
538
  auto res = makeArray<complex<T>>({nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
539
  auto vis = make_mav<1>(res);
540
  vis.fill(0);
Martin Reinecke's avatar
Martin Reinecke committed
541
542
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
543
  grid2vis_c<T>(baselines, gconf, idx2, grid2, vis, wgt2);
Martin Reinecke's avatar
Martin Reinecke committed
544
  }
545
546
547
  return res;
  }

548
549
550
551
552
553
554
555
556
557
558
559
560
561
constexpr auto grid2vis_DS = R"""(
Degrids visibilities from a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be degridded
grid: np.array((nu,nv), dtype=np.float64):
    the gridded visibilities (made real by making use of Hermitian symmetry)
Martin Reinecke's avatar
Martin Reinecke committed
562
563
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
564
565
566
567
568
569

Returns
=======
np.array((nvis,), dtype=np.complex)
    The degridded visibility data
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
570
571
template<typename T> pyarr<complex<T>> Pygrid2vis(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
572
573
574
575
576
577
578
  const pyarr<T> &grid_, const py::object &wgt_)
  {
  auto tmp=makeArray<complex<T>>({gconf.Nu(), gconf.Nv()});
  gridder::detail::hartley2complex(make_const_mav<2>(grid_),make_mav<2>(tmp), gconf.Nthreads());
  return Pygrid2vis_c(baselines, gconf, idx_, tmp, wgt_);
  }

Martin Reinecke's avatar
updates    
Martin Reinecke committed
579
template<typename T> pyarr<complex<T>> Pygrid2ms_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
580
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
updates    
Martin Reinecke committed
581
582
583
584
585
586
587
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &grid_,
  py::object &ms_in, const py::object &wgt_)
  {
  auto nrows = baselines.Nrows();
  auto nchan = baselines.Nchannels();
  auto grid2 = make_const_mav<2>(grid_);
  auto idx2 = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
588
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
589
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
590
  auto res = provideArray<complex<T>>(ms_in, "ms_in", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
591
592
593
594
595
596
597
  auto ms = make_mav<2>(res);
  {
  py::gil_scoped_release release;
  grid2ms_c<T>(baselines, gconf, idx2, grid2, ms, wgt2);
  }
  return res;
  }
Martin Reinecke's avatar
merge    
Martin Reinecke committed
598

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
599
600
template<typename T> pyarr<complex<T>> Pygrid2ms(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
601
602
603
604
605
606
607
608
  const pyarr<T> &grid_, py::object &ms_in, const py::object &wgt_)
  {
  auto grid2_ = makeArray<complex<T>>({gconf.Nu(), gconf.Nv()});
  auto grid2 = make_mav<2>(grid2_);
  gridder::detail::hartley2complex(make_const_mav<2>(grid_), grid2, gconf.Nthreads());
  return Pygrid2ms_c(baselines, gconf, idx_, grid2_, ms_in, wgt_);
  }

Martin Reinecke's avatar
Martin Reinecke committed
609
template<typename T> pyarr<complex<T>> apply_holo2(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
610
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
611
  const py::array &idx_, const py::array &grid_, const py::object &wgt_)
612
  {
Martin Reinecke's avatar
Martin Reinecke committed
613
614
615
616
617
618
619
620
  auto idx = getPyarr<uint32_t>(idx_, "idx");
  auto idx2 = make_const_mav<1>(idx);
  auto grid = getPyarr<complex<T>>(grid_, "grid");
  auto grid2 = make_const_mav<2>(grid);
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {idx2.shape(0)});
  auto wgt2 = make_const_mav<1>(wgt);
  auto res = makeArray<complex<T>>({grid2.shape(0),grid2.shape(1)});
  auto res2 = make_mav<2>(res);
621
622
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
623
  apply_holo(baselines, gconf, idx2, grid2, res2, wgt2);
624
625
626
  }
  return res;
  }
Martin Reinecke's avatar
Martin Reinecke committed
627
628
629
630
631
632
633
634
635
636
py::array Pyapply_holo(
  const PyBaselines &baselines, const PyGridderConfig &gconf,
  const py::array &idx, const py::array &grid, const py::object &wgt)
  {
  if (isPytype<complex<float>>(grid))
    return apply_holo2<float>(baselines, gconf, idx, grid, wgt);
  if (isPytype<complex<double>>(grid))
    return apply_holo2<double>(baselines, gconf, idx, grid, wgt);
  myfail("type matching failed: 'grid' has neither type 'c8' nor 'c16'");
  }
637

Martin Reinecke's avatar
Martin Reinecke committed
638
template<typename T> pyarr<T> Pyget_correlations(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
639
  const PyBaselines &baselines, const PyGridderConfig &gconf,
640
  const pyarr<uint32_t> &idx_, int du, int dv, const py::object &wgt_)
641
  {
Martin Reinecke's avatar
Martin Reinecke committed
642
  auto idx = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
643
  pyarr<T> wgt2 = providePotentialArray<T>(wgt_, "wgt", {idx.shape(0)});
Martin Reinecke's avatar
Martin Reinecke committed
644
645
646
647
  auto wgt=make_const_mav<1>(wgt2);

  auto res = makeArray<T>({gconf.Nu(),gconf.Nv()});
  auto ogrid = make_mav<2>(res);
648
649
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
650
  get_correlations(baselines, gconf, idx, du, dv, ogrid, wgt);
651
652
653
654
  }
  return res;
  }

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
constexpr auto getIndices_DS = R"""(
Selects a subset of entries from a `Baselines` object.

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used with the returned indices.
    (used to optimize the ordering of the indices)
flags: np.array((nrows, nchannels), dtype=np.bool)
    "True" indicates that the value should not be used
chbegin: int
    first channel to use (-1: start with the first available channel)
chend: int
    one-past last channel to use (-1: one past the last available channel)
wmin: float
    only select entries with w>=wmin
wmax: float
    only select entries with w<wmax

Returns
=======
np.array((nvis,), dtype=np.uint32)
    the compressed indices for all entries which match the selected criteria
    and are not flagged.
)""";
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
682
pyarr<uint32_t> PygetIndices(const PyBaselines &baselines,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
683
  const PyGridderConfig &gconf, const pyarr<bool> &flags_, int chbegin,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
684
  int chend, double wmin, double wmax)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
685
  {
686
687
  size_t nidx;
  auto flags = make_const_mav<2>(flags_);
Martin Reinecke's avatar
Martin Reinecke committed
688
689
  {
  py::gil_scoped_release release;
690
  nidx = getIdxSize(baselines, flags, chbegin, chend, wmin, wmax, gconf.Nthreads());
Martin Reinecke's avatar
Martin Reinecke committed
691
  }
692
693
  auto res = makeArray<uint32_t>({nidx});
  auto res2 = make_mav<1>(res);
Martin Reinecke's avatar
Martin Reinecke committed
694
695
  {
  py::gil_scoped_release release;
696
  fillIdx(baselines, gconf, flags, chbegin, chend, wmin, wmax, res2);
Martin Reinecke's avatar
Martin Reinecke committed
697
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
698
699
700
  return res;
  }

Martin Reinecke's avatar
Martin Reinecke committed
701
702
template<typename T> pyarr<T> vis2dirty2(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const py::array &idx_,
703
  const py::array &vis_, const py::object &wgt_, bool do_wstacking)
Martin Reinecke's avatar
Martin Reinecke committed
704
  {
Martin Reinecke's avatar
Martin Reinecke committed
705
706
707
708
709
710
  auto idx = getPyarr<uint32_t>(idx_, "idx");
  auto idx2 = make_const_mav<1>(idx);
  auto dirty = makeArray<T>({gconf.Nxdirty(), gconf.Nydirty()});
  auto dirty2 = make_mav<2>(dirty);
  auto vis = getPyarr<complex<T>>(vis_, "vis");
  auto vis2 = make_const_mav<1>(vis);
711
712
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {idx2.shape(0)});
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
713
714
  {
  py::gil_scoped_release release;
715
  vis2dirty<T>(baselines, gconf, idx2, vis2, wgt2, dirty2, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
716
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
717
  return dirty;
Martin Reinecke's avatar
Martin Reinecke committed
718
  }
Martin Reinecke's avatar
Martin Reinecke committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

constexpr auto vis2dirty_DS = R"""(
Converts an array of visibilities to a dirty image.

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the provided visibilities
vis: np.array(nvis,), dtype=np.complex64 or np.complex128)
    The input visibilities
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nvis,), dtype=float with same precision as `vis`, optional
    If present, visibilities are multiplied by the corresponding entries.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.

Returns
=======
np.array((nxdirty, nydirty), dtype=float of same precision as `vis`.)
    The dirty image
)""";

Martin Reinecke's avatar
Martin Reinecke committed
748
749
py::array Pyvis2dirty(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const py::array &idx,
750
  const py::array &vis, const py::object &wgt, bool do_wstacking)
Martin Reinecke's avatar
Martin Reinecke committed
751
752
  {
  if (isPytype<complex<float>>(vis))
753
    return vis2dirty2<float>(baselines, gconf, idx, vis, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
754
  if (isPytype<complex<double>>(vis))
755
    return vis2dirty2<double>(baselines, gconf, idx, vis, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
756
757
  myfail("type matching failed: 'vis' has neither type 'c8' nor 'c16'");
  }
Martin Reinecke's avatar
Martin Reinecke committed
758

Martin Reinecke's avatar
Martin Reinecke committed
759
template<typename T> pyarr<complex<T>> dirty2vis2(const PyBaselines &baselines,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
760
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
761
  const pyarr<T> &dirty_, const py::object &wgt_, bool do_wstacking)
762
  {
Martin Reinecke's avatar
Martin Reinecke committed
763
764
765
766
  auto idx = getPyarr<uint32_t>(idx_, "idx");
  auto idx2 = make_const_mav<1>(idx);
  auto dirty = getPyarr<T>(dirty_, "dirty");
  auto dirty2 = make_const_mav<2>(dirty_);
767
768
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {idx2.shape(0)});
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
769
770
  auto vis = makeArray<complex<T>>({idx2.shape(0)});
  auto vis2 = make_mav<1>(vis);
771
  vis2.fill(0);
772
773
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
774
  vis2.fill(0);
775
  dirty2vis<T>(baselines, gconf, idx2, dirty2, wgt2, vis2, do_wstacking);
776
777
778
  }
  return vis;
  }
Martin Reinecke's avatar
Martin Reinecke committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

constexpr auto dirty2vis_DS = R"""(
Converts a dirty image into a 1D array of visibilities.

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the visibilities to be computed
dirty: np.array((nxdirty, nydirty), dtype=np.float32 or np.float64)
    dirty image
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nvis,), same dtype as `dirty`, optional
    If present, visibilities are multiplied by the corresponding entries.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.

Returns
=======
np.array((nvis,), dtype=complex of same precision as `dirty`.)
    The visibility data
)""";
Martin Reinecke's avatar
Martin Reinecke committed
807
py::array Pydirty2vis(const PyBaselines &baselines,
808
809
  const PyGridderConfig &gconf, const py::array &idx, const py::array &dirty,
  const py::object &wgt, bool do_wstacking)
Martin Reinecke's avatar
Martin Reinecke committed
810
811
  {
  if (isPytype<float>(dirty))
812
    return dirty2vis2<float>(baselines, gconf, idx, dirty, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
813
  if (isPytype<double>(dirty))
814
    return dirty2vis2<double>(baselines, gconf, idx, dirty, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
815
816
  myfail("type matching failed: 'dirty' has neither type 'f4' nor 'f8'");
  }
817

Martin Reinecke's avatar
Martin Reinecke committed
818
template<typename T> py::array ms2dirty2(const py::array &uvw_,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
819
  const py::array &freq_, const py::array &ms_, const py::object &wgt_,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
820
  size_t npix_x, size_t npix_y, double pixsize_x, double pixsize_y, double epsilon,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
821
  bool do_wstacking, size_t nthreads, size_t verbosity)
822
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
823
  auto uvw = getPyarr<double>(uvw_, "uvw");
824
  auto uvw2 = make_const_mav<2>(uvw);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
825
  auto freq = getPyarr<double>(freq_, "freq");
826
  auto freq2 = make_const_mav<1>(freq);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
827
  auto ms = getPyarr<complex<T>>(ms_, "ms");
828
  auto ms2 = make_const_mav<2>(ms);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
829
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {ms2.shape(0),ms2.shape(1)});
830
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
831
832
  auto dirty = makeArray<T>({npix_x,npix_y});
  auto dirty2 = make_mav<2>(dirty);
Martin Reinecke's avatar
Martin Reinecke committed
833
834
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
835
  ms2dirty(uvw2,freq2,ms2,wgt2,pixsize_x,pixsize_y,epsilon,do_wstacking,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
836
    nthreads,dirty2,verbosity);
Martin Reinecke's avatar
Martin Reinecke committed
837
  }
838
839
840
  return dirty;
  }

Martin Reinecke's avatar
Martin Reinecke committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
constexpr auto ms2dirty_DS = R"""(
Converts an MS object to dirty image.

Parameters
==========
uvw: np.array((nrows, 3), dtype=np.float64)
    UVW coordinates from the measurement set
freq: np.array((nchan,), dtype=np.float64)
    channel frequencies
ms: np.array((nrows, nchan,), dtype=np.complex64 or np.complex128)
    the input measurement set data.
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nrows, nchan), float with same precision as `ms`), optional
    If present, its values are multiplied to the output
npix_x, npix_y: int
    dimensions of the dirty image
pixsize_x, pixsize_y: float
    angular pixel size (in radians) of the dirty image
epsilon: float
    accuracy at which the computation should be done. Must be larger than 2e-13.
    If `ms` has type np.complex64, it must be larger than 1e-5.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.
nthreads: int
    number of threads to use for the calculation
verbosity: int
    0: no output
    1: some output
    2: detailed output

Returns
=======
np.array((nxdirty, nydirty), dtype=float of same precision as `ms`)
    the dirty image
)""";
Martin Reinecke's avatar
Martin Reinecke committed
878
py::array Pyms2dirty(const py::array &uvw,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
879
  const py::array &freq, const py::array &ms, const py::object &wgt,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
880
  size_t npix_x, size_t npix_y, double pixsize_x, double pixsize_y, double epsilon,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
881
  bool do_wstacking, size_t nthreads, size_t verbosity)
Martin Reinecke's avatar
Martin Reinecke committed
882
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
883
  if (isPytype<complex<float>>(ms))
Martin Reinecke's avatar
Martin Reinecke committed
884
    return ms2dirty2<float>(uvw, freq, ms, wgt, npix_x, npix_y,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
885
886
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  if (isPytype<complex<double>>(ms))
Martin Reinecke's avatar
Martin Reinecke committed
887
    return ms2dirty2<double>(uvw, freq, ms, wgt, npix_x, npix_y,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
888
889
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  myfail("type matching failed: 'ms' has neither type 'c8' nor 'c16'");
Martin Reinecke's avatar
Martin Reinecke committed
890
891
  }

Martin Reinecke's avatar
Martin Reinecke committed
892
template<typename T> py::array dirty2ms2(const py::array &uvw_,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
893
894
895
  const py::array &freq_, const py::array &dirty_, const py::object &wgt_,
  double pixsize_x, double pixsize_y, double epsilon,
  bool do_wstacking, size_t nthreads, size_t verbosity)
Martin Reinecke's avatar
Martin Reinecke committed
896
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
897
  auto uvw = getPyarr<double>(uvw_, "uvw");
Martin Reinecke's avatar
Martin Reinecke committed
898
  auto uvw2 = make_const_mav<2>(uvw);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
899
  auto freq = getPyarr<double>(freq_, "freq");
Martin Reinecke's avatar
Martin Reinecke committed
900
  auto freq2 = make_const_mav<1>(freq);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
901
  auto dirty = getPyarr<T>(dirty_, "dirty");
Martin Reinecke's avatar
Martin Reinecke committed
902
  auto dirty2 = make_const_mav<2>(dirty);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
903
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {uvw2.shape(0),freq2.shape(0)});
Martin Reinecke's avatar
Martin Reinecke committed
904
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
905
906
  auto ms = makeArray<complex<T>>({uvw2.shape(0),freq2.shape(0)});
  auto ms2 = make_mav<2>(ms);
Martin Reinecke's avatar
Martin Reinecke committed
907
908
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
909
  dirty2ms(uvw2,freq2,dirty2,wgt2,pixsize_x,pixsize_y,epsilon,do_wstacking,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
910
    nthreads,ms2,verbosity);
Martin Reinecke's avatar
Martin Reinecke committed
911
  }
Martin Reinecke's avatar
Martin Reinecke committed
912
913
914
  return ms;
  }

Martin Reinecke's avatar
Martin Reinecke committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
constexpr auto dirty2ms_DS = R"""(
Converts a dirty image to an MS object.

Parameters
==========
uvw: np.array((nrows, 3), dtype=np.float64)
    UVW coordinates from the measurement set
freq: np.array((nchan,), dtype=np.float64)
    channel frequencies
dirty: np.array((nxdirty, nydirty), dtype=np.float32 or np.float64)
    dirty image
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nrows, nchan), same dtype as `dirty`), optional
    If present, its values are multiplied to the output
pixsize_x, pixsize_y: float
    angular pixel size (in radians) of the dirty image
epsilon: float
    accuracy at which the computation should be done. Must be larger than 2e-13.
    If `dirty` has type np.float32, it must be larger than 1e-5.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.
nthreads: int
    number of threads to use for the calculation
verbosity: int
    0: no output
    1: some output
    2: detailed output

Returns
=======
np.array((nrows, nchan,), dtype=complex of same precision as `dirty`)
    the measurement set data.
)""";
Martin Reinecke's avatar
Martin Reinecke committed
950
py::array Pydirty2ms(const py::array &uvw,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
951
952
953
954
955
  const py::array &freq, const py::array &dirty, const py::object &wgt,
  double pixsize_x, double pixsize_y, double epsilon,
  bool do_wstacking, size_t nthreads, size_t verbosity)
  {
  if (isPytype<float>(dirty))
Martin Reinecke's avatar
Martin Reinecke committed
956
    return dirty2ms2<float>(uvw, freq, dirty, wgt,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
957
958
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  if (isPytype<double>(dirty))
Martin Reinecke's avatar
Martin Reinecke committed
959
    return dirty2ms2<double>(uvw, freq, dirty, wgt,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
960
961
962
963
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  myfail("type matching failed: 'dirty' has neither type 'f4' nor 'f8'");
  }

Martin Reinecke's avatar
import  
Martin Reinecke committed
964
965
966
967
} // unnamed namespace

PYBIND11_MODULE(nifty_gridder, m)
  {
968
969
  using namespace pybind11::literals;

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
970
  py::class_<PyBaselines> (m, "Baselines", PyBaselines_DS)
Martin Reinecke's avatar
Martin Reinecke committed
971
    .def(py::init<const pyarr<double> &, const pyarr<double> &>(),
972
      "coord"_a, "freq"_a)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
973
974
975
976
977
978
979
980
    .def ("Nrows",&PyBaselines::Nrows)
    .def ("Nchannels",&PyBaselines::Nchannels)
    .def ("ms2vis",&PyBaselines::ms2vis<complex<double>>,
      PyBaselines::ms2vis_DS, "ms"_a, "idx"_a, "nthreads"_a=1)
    .def ("effectiveuvw",&PyBaselines::effectiveuvw<double>, "idx"_a)
    .def ("vis2ms",&PyBaselines::vis2ms<complex<double>>,
      PyBaselines::vis2ms_DS, "vis"_a, "idx"_a, "ms_in"_a=None, "nthreads"_a=1);
  py::class_<PyGridderConfig> (m, "GridderConfig", GridderConfig_DS)
Martin Reinecke's avatar
Martin Reinecke committed
981
982
    .def(py::init<size_t, size_t, double, double, double, size_t>(),"nxdirty"_a,
      "nydirty"_a, "epsilon"_a, "pixsize_x"_a, "pixsize_y"_a, "nthreads"_a=1)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
983
984
985
986
987
988
989
990
991
    .def("Nxdirty", &PyGridderConfig::Nxdirty)
    .def("Nydirty", &PyGridderConfig::Nydirty)
    .def("Epsilon", &PyGridderConfig::Epsilon)
    .def("Pixsize_x", &PyGridderConfig::Pixsize_x)
    .def("Pixsize_y", &PyGridderConfig::Pixsize_y)
    .def("Nu", &PyGridderConfig::Nu)
    .def("Nv", &PyGridderConfig::Nv)
    .def("Supp", &PyGridderConfig::Supp)
    .def("apply_taper", &PyGridderConfig::apply_taper<double>, apply_taper_DS,
Martin Reinecke's avatar
Martin Reinecke committed
992
      "img"_a, "divide"_a=false)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
993
     .def("grid2dirty", &PyGridderConfig::grid2dirty<double>,
994
        grid2dirty_DS, "grid"_a)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
995
996
    .def("grid2dirty_c", &PyGridderConfig::grid2dirty_c<double>, "grid"_a)
    .def("dirty2grid", &PyGridderConfig::dirty2grid<double>,
997
       dirty2grid_DS, "dirty"_a)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
998
999
    .def("dirty2grid_c", &PyGridderConfig::dirty2grid_c<double>, "dirty"_a)
    .def("apply_wscreen", &PyGridderConfig::apply_wscreen<double>,
Martin Reinecke's avatar
Martin Reinecke committed
1000
      apply_wscreen_DS, "dirty"_a, "w"_a, "adjoint"_a)
1001
1002
1003
1004

    // pickle support
    .def(py::pickle(
        // __getstate__
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1005
        [](const PyGridderConfig & gc) {
1006
1007
          // Encode object state in tuple
          return py::make_tuple(gc.Nxdirty(), gc.Nydirty(), gc.Epsilon(),
Martin Reinecke's avatar
Martin Reinecke committed
1008
                                gc.Pixsize_x(), gc.Pixsize_y(), gc.Nthreads());
1009
1010
1011
        },
        // __setstate__
        [](py::tuple t) {
Martin Reinecke's avatar
Martin Reinecke committed
1012
          myassert(t.size()==6,"Invalid state");
1013
1014

          // Reconstruct from tuple
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1015
1016
1017
          return PyGridderConfig(t[0].cast<size_t>(), t[1].cast<size_t>(),
                                 t[2].cast<double>(), t[3].cast<double>(),
                                 t[4].cast<double>(), t[5].cast<size_t>());
1018
1019

        }));
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
1020
  m.def("getIndices", PygetIndices, getIndices_DS, "baselines"_a,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
1021
    "gconf"_a, "flags"_a, "chbegin"_a=-1, "chend"_a=-1,
1022
    "wmin"_a=-1e30, "wmax"_a=1e30);
Martin Reinecke's avatar
Martin Reinecke committed
1023
1024
  m.def("vis2grid",&Pyvis2grid<double>, vis2grid_DS, "baselines"_a, "gconf"_a,
    "idx"_a, "vis"_a, "grid_in"_a=None, "wgt"_a=None);
1025
1026
1027
1028
1029
1030
  m.def("ms2grid",&Pyms2grid<double>, "baselines"_a, "gconf"_a, "idx"_a, "ms"_a,
    "grid_in"_a=None, "wgt"_a=None);
  m.def("grid2vis",&Pygrid2vis<double>, grid2vis_DS, "baselines"_a, "gconf"_a,
    "idx"_a, "grid"_a, "wgt"_a=None);
  m.def("grid2ms",&Pygrid2ms<double>, "baselines"_a, "gconf"_a, "idx"_a,
    "grid"_a, "ms_in"_a=None, "wgt"_a=None);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
1031
  m.def("vis2grid_c",&Pyvis2grid_c<double>, vis2grid_c_DS, "baselines"_a,
Martin Reinecke's avatar
Martin Reinecke committed
1032
    "gconf"_a, "idx"_a, "vis"_a, "grid_in"_a=None, "wgt"_a=None);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
1033
  m.def("ms2grid_c",&Pyms2grid_c<double>, ms2grid_c_DS, "baselines"_a, "gconf"_a,
Martin Reinecke's avatar
Martin Reinecke committed
1034
    "idx"_a, "ms"_a, "grid_in"_a=None, "wgt"_a=None);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
1035
  m.def("grid2vis_c",&Pygrid2vis_c<double>, "baselines"_a, "gconf"_a, "idx"_a,
Martin Reinecke's avatar
Martin Reinecke committed
1036
    "grid"_a, "wgt"_a=None);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
1037
  m.def("grid2ms_c",&Pygrid2ms_c<double>, "baselines"_a, "gconf"_a, "idx"_a,
Martin Reinecke's avatar
Martin Reinecke committed
1038
    "grid"_a, "ms_in"_a=None, "wgt"_a=None);
Martin Reinecke's avatar
Martin Reinecke committed
1039
  m.def("apply_holo",&Pyapply_holo, "baselines"_a, "gconf"_a, "idx"_a,
Martin Reinecke's avatar
Martin Reinecke committed
1040
    "grid"_a, "wgt"_a=None);
Martin Reinecke's avatar
Martin Reinecke committed
1041
  m.def("get_correlations", &Pyget_correlations<double>, "baselines"_a, "gconf"_a,
Martin Reinecke's avatar
Martin Reinecke committed
1042
    "idx"_a, "du"_a, "dv"_a, "wgt"_a=None);
Martin Reinecke's avatar
Martin Reinecke committed
1043
  m.def("vis2dirty",&Pyvis2dirty, vis2dirty_DS, "baselines"_a, "gconf"_a,
1044
    "idx"_a, "vis"_a, "wgt"_a=None, "do_wstacking"_a=false);
Martin Reinecke's avatar
Martin Reinecke committed
1045
  m.def("dirty2vis",&Pydirty2vis, "baselines"_a, dirty2vis_DS, "gconf"_a,
1046
    "idx"_a, "dirty"_a, "wgt"_a=None, "do_wstacking"_a=false);
Martin Reinecke's avatar
Martin Reinecke committed
1047

Martin Reinecke's avatar
Martin Reinecke committed
1048
1049
1050
1051
1052
  m.def("ms2dirty", &Pyms2dirty, ms2dirty_DS, "uvw"_a, "freq"_a, "ms"_a,
    "wgt"_a=None, "npix_x"_a, "npix_y"_a, "pixsize_x"_a, "pixsize_y"_a,
    "epsilon"_a, "do_wstacking"_a=false, "nthreads"_a=1, "verbosity"_a=0);
  m.def("dirty2ms", &Pydirty2ms, dirty2ms_DS, "uvw"_a, "freq"_a, "dirty"_a,
    "wgt"_a=None, "pixsize_x"_a, "pixsize_y"_a, "epsilon"_a,
Martin Reinecke's avatar