nifty_gridder.cc 37.5 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
 *  This file is part of nifty_gridder.
 *
 *  nifty_gridder is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  nifty_gridder is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
Martin Reinecke's avatar
Martin Reinecke committed
15
 *  along with nifty_gridder; if not, write to the Free Software
Martin Reinecke's avatar
Martin Reinecke committed
16
17
18
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

Martin Reinecke's avatar
Martin Reinecke committed
19
20
21
/* Copyright (C) 2019 Max-Planck-Society
   Author: Martin Reinecke */

Martin Reinecke's avatar
import  
Martin Reinecke committed
22
23
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
Martin Reinecke's avatar
Martin Reinecke committed
24

Martin Reinecke's avatar
Martin Reinecke committed
25
#include "gridder_cxx.h"
Martin Reinecke's avatar
import  
Martin Reinecke committed
26
27

using namespace std;
Martin Reinecke's avatar
Martin Reinecke committed
28
using namespace gridder;
Martin Reinecke's avatar
import  
Martin Reinecke committed
29
30
31
32
33

namespace py = pybind11;

namespace {

Martin Reinecke's avatar
Martin Reinecke committed
34
35
auto None = py::none();

36
template<typename T>
Martin Reinecke's avatar
updates    
Martin Reinecke committed
37
  using pyarr = py::array_t<T, 0>;
Martin Reinecke's avatar
import  
Martin Reinecke committed
38

39
40
41
42
43
44
45
46
47
48
template<typename T> bool isPytype(const py::array &arr)
  {
  auto t1=arr.dtype();
  auto t2=pybind11::dtype::of<T>();
  auto k1=t1.kind();
  auto k2=t2.kind();
  auto s1=t1.itemsize();
  auto s2=t2.itemsize();
  return (k1==k2)&&(s1==s2);
  }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
49
50
51
52
template<typename T> pyarr<T> getPyarr(const py::array &arr, const string &name)
  {
  auto t1=arr.dtype();
  auto t2=pybind11::dtype::of<T>();
53
54
55
56
57
58
59
  auto k1=t1.kind();
  auto k2=t2.kind();
  auto s1=t1.itemsize();
  auto s2=t2.itemsize();
  myassert((k1==k2)&&(s1==s2),
    "type mismatch for array '", name, "': expected '", k2, s2,
    "', but got '", k1, s1, "'.");
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
60
61
62
  return arr.cast<pyarr<T>>();
  }

Martin Reinecke's avatar
Martin Reinecke committed
63
64
template<typename T> pyarr<T> makeArray(const vector<size_t> &shape)
  { return pyarr<T>(shape); }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
65

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
66
void checkArray(const py::array &arr, const string &aname,
Martin Reinecke's avatar
merge    
Martin Reinecke committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  const vector<size_t> &shape)
  {
  if (size_t(arr.ndim())!=shape.size())
    {
    cerr << "Array '" << aname << "' has " << arr.ndim() << " dimensions; "
            "expected " << shape.size() << endl;
    throw runtime_error("bad dimensionality");
    }
  for (size_t i=0; i<shape.size(); ++i)
    if ((shape[i]!=0) && (size_t(arr.shape(i))!=shape[i]))
      {
      cerr << "Dimension " << i << " of array '" << aname << "' has size "
           << arr.shape(i) << "; expected " << shape[i] << endl;
      throw runtime_error("bad array size");
      }
  }

Martin Reinecke's avatar
Martin Reinecke committed
84
template<typename T> pyarr<T> provideArray(const py::object &in,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
85
  const string &name, const vector<size_t> &shape)
Martin Reinecke's avatar
merge    
Martin Reinecke committed
86
  {
87
  if (in.is_none())
Martin Reinecke's avatar
merge    
Martin Reinecke committed
88
89
90
91
92
93
94
95
    {
    auto tmp_ = makeArray<T>(shape);
    size_t sz = size_t(tmp_.size());
    auto tmp = tmp_.mutable_data();
    for (size_t i=0; i<sz; ++i)
      tmp[i] = T(0);
    return tmp_;
    }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
96
97
  auto tmp_ = getPyarr<T>(in.cast<py::array>(), name);
  checkArray(tmp_, name, shape);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
98
99
100
  return tmp_;
  }

Martin Reinecke's avatar
Martin Reinecke committed
101
template<typename T> pyarr<T> providePotentialArray(const py::object &in,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
102
  const string &name, const vector<size_t> &shape)
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
  {
  if (in.is_none())
    return makeArray<T>(vector<size_t>(shape.size(), 0));
Martin Reinecke's avatar
Martin Reinecke committed
106
  return getPyarr<T>(in.cast<py::array>(), name);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
107
108
  }

Martin Reinecke's avatar
Martin Reinecke committed
109
template<size_t ndim, typename T> mav<T,ndim> make_mav(pyarr<T> &in)
Martin Reinecke's avatar
Martin Reinecke committed
110
  {
Martin Reinecke's avatar
Martin Reinecke committed
111
112
113
114
  myassert(ndim==in.ndim(), "dimension mismatch");
  array<size_t,ndim> dims;
  array<ptrdiff_t,ndim> str;
  for (size_t i=0; i<ndim; ++i)
Martin Reinecke's avatar
Martin Reinecke committed
115
    {
Martin Reinecke's avatar
Martin Reinecke committed
116
117
118
    dims[i]=in.shape(i);
    str[i]=in.strides(i)/sizeof(T);
    myassert(str[i]*ptrdiff_t(sizeof(T))==in.strides(i), "weird strides");
Martin Reinecke's avatar
Martin Reinecke committed
119
    }
Martin Reinecke's avatar
Martin Reinecke committed
120
  return mav<T, ndim>(in.mutable_data(),dims,str);
Martin Reinecke's avatar
Martin Reinecke committed
121
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
122
template<size_t ndim, typename T> const_mav<T,ndim> make_const_mav(const pyarr<T> &in)
Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
126
127
128
129
130
131
132
  {
  myassert(ndim==in.ndim(), "dimension mismatch");
  array<size_t,ndim> dims;
  array<ptrdiff_t,ndim> str;
  for (size_t i=0; i<ndim; ++i)
    {
    dims[i]=in.shape(i);
    str[i]=in.strides(i)/sizeof(T);
    myassert(str[i]*ptrdiff_t(sizeof(T))==in.strides(i), "weird strides");
    }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
133
  return const_mav<T, ndim>(in.data(),dims,str);
Martin Reinecke's avatar
Martin Reinecke committed
134
  }
Martin Reinecke's avatar
Martin Reinecke committed
135

Martin Reinecke's avatar
Martin Reinecke committed
136
constexpr auto PyBaselines_DS = R"""(
137
138
139
140
Class storing UVW coordinates and channel information.

Parameters
==========
Martin Reinecke's avatar
Martin Reinecke committed
141
coord: np.array((nrows, 3), dtype=np.float64)
142
    u, v and w coordinates for each row
Martin Reinecke's avatar
Martin Reinecke committed
143
freq: np.array((nchannels,), dtype=np.float64)
144
145
    frequency for each individual channel (in Hz)
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
146
class PyBaselines: public Baselines
Martin Reinecke's avatar
Martin Reinecke committed
147
148
  {
  public:
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
149
150
151
    using Baselines::Baselines;
    template<typename T> PyBaselines(const pyarr<T> &coord, const pyarr<T> &freq)
      : Baselines(make_const_mav<2>(coord), make_const_mav<1>(freq))
Martin Reinecke's avatar
Martin Reinecke committed
152
      {}
Martin Reinecke's avatar
Martin Reinecke committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    static constexpr auto ms2vis_DS = R"""(
    Extracts visibility data from a measurement for the provided indices.

    Parameters
    ==========
    ms: np.array((nrows, nchannels), dtype=np.complex)
        the measurement set's visibility data
    idx: np.array((nvis,), dtype=np.uint32)
        the indices to be extracted

    Returns
    =======
    np.array((nvis,), dtype=np.complex)
        The visibility data for the index array
    )""";
169

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
170
    template<typename T> pyarr<T> effectiveuvw(const pyarr<uint32_t> &idx_) const
Martin Reinecke's avatar
Martin Reinecke committed
171
      {
172
      size_t nvis = size_t(idx_.shape(0));
Martin Reinecke's avatar
Martin Reinecke committed
173
      auto idx=make_const_mav<1>(idx_);
174
      auto res_=makeArray<T>({nvis, 3});
Martin Reinecke's avatar
Martin Reinecke committed
175
      auto res=make_mav<2>(res_);
Martin Reinecke's avatar
Martin Reinecke committed
176
177
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
178
      Baselines::effectiveUVW(idx,res);
Martin Reinecke's avatar
Martin Reinecke committed
179
      }
180
      return res_;
Martin Reinecke's avatar
Martin Reinecke committed
181
      }
182

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
183
    template<typename T> pyarr<T> ms2vis(const pyarr<T> &ms_,
Martin Reinecke's avatar
Martin Reinecke committed
184
      const pyarr<uint32_t> &idx_, size_t nthreads) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
185
      {
Martin Reinecke's avatar
Martin Reinecke committed
186
      auto idx=make_const_mav<1>(idx_);
Martin Reinecke's avatar
Martin Reinecke committed
187
      size_t nvis = size_t(idx.shape(0));
Martin Reinecke's avatar
Martin Reinecke committed
188
      auto ms = make_const_mav<2>(ms_);
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
189
      auto res=makeArray<T>({nvis});
Martin Reinecke's avatar
Martin Reinecke committed
190
      auto vis = make_mav<1>(res);
Martin Reinecke's avatar
Martin Reinecke committed
191
192
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
193
      Baselines::ms2vis(ms, idx, vis, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
194
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
195
196
197
      return res;
      }

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    static constexpr auto vis2ms_DS = R"""(
    Produces a new MS with the provided visibilities set.

    Parameters
    ==========
    vis: np.array((nvis,), dtype=np.complex)
        The visibility data for the index array
    idx: np.array((nvis,), dtype=np.uint32)
        the indices to be inserted
    ms_in: np.array((nrows, nchannels), dtype=np.complex), optional
        input measurement set to which the visibilities are added.

    Returns
    =======
    np.array((nrows, nchannels), dtype=np.complex)
        the measurement set's visibility data (0 where not covered by idx)
    )""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
215
    template<typename T> pyarr<T> vis2ms(const pyarr<T> &vis_,
Martin Reinecke's avatar
Martin Reinecke committed
216
      const pyarr<uint32_t> &idx_, py::object &ms_in, size_t nthreads) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
217
      {
Martin Reinecke's avatar
Martin Reinecke committed
218
219
      auto vis=make_const_mav<1>(vis_);
      auto idx=make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
220
      auto res = provideArray<T>(ms_in, "ms_in", {nrows, nchan});
Martin Reinecke's avatar
Martin Reinecke committed
221
      auto ms = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
222
223
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
224
      Baselines::vis2ms(vis, idx, ms, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
225
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
226
227
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
228
229
  };

230
231
232
233
234
constexpr auto grid2dirty_DS = R"""(
Converts from UV grid to dirty image (FFT, cropping, correction)

Parameters
==========
Martin Reinecke's avatar
Martin Reinecke committed
235
grid: np.array((nu, nv), dtype=np.float32 or np.float64)
236
237
238
239
    gridded UV data

Returns
=======
Martin Reinecke's avatar
Martin Reinecke committed
240
nd.array((nxdirty, nydirty), same dtype as `grid`)
241
242
243
244
245
246
247
248
    the dirty image
)""";

constexpr auto dirty2grid_DS = R"""(
Converts from a dirty image to a UV grid (correction, padding, FFT)

Parameters
==========
Martin Reinecke's avatar
Martin Reinecke committed
249
dirty: nd.array((nxdirty, nydirty), dtype=np.float32 or np.float64)
250
251
252
253
    the dirty image

Returns
=======
Martin Reinecke's avatar
Martin Reinecke committed
254
np.array((nu, nv), same dtype as `dirty`)
255
256
257
    gridded UV data
)""";

Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
262
constexpr auto apply_taper_DS = R"""(
Applies the taper (or its inverse) to an image

Parameters
==========
Martin Reinecke's avatar
Martin Reinecke committed
263
img: nd.array((nxdirty, nydirty), dtype=np.float32 or np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
264
265
266
267
268
269
    the image
divide: bool
    if True, the routine dividex by the taper, otherwise it multiplies by it

Returns
=======
Martin Reinecke's avatar
Martin Reinecke committed
270
np.array((nxdirty, nydirty), same dtype as `img`)
Martin Reinecke's avatar
Martin Reinecke committed
271
272
273
    the image with the taper applied
)""";

Martin Reinecke's avatar
Martin Reinecke committed
274
275
276
277
278
constexpr auto apply_wscreen_DS = R"""(
Applies the w screen to an image

Parameters
==========
Martin Reinecke's avatar
Martin Reinecke committed
279
dirty: nd.array((nxdirty, nydirty), dtype=np.complex64 or np.complex128)
Martin Reinecke's avatar
Martin Reinecke committed
280
281
282
283
284
285
286
287
    the image
w : float
    the w value to use
adjoint: bool
    if True, apply the complex conjugate of the w screen

Returns
=======
Martin Reinecke's avatar
Martin Reinecke committed
288
np.array((nxdirty, nydirty), same dtype as 'dirty')
Martin Reinecke's avatar
Martin Reinecke committed
289
290
291
    the image with the w screen applied
)""";

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
constexpr auto GridderConfig_DS = R"""(
Class storing information related to the gridding/degridding process.

Parameters
==========
nxdirty: int
    x resolution of the dirty image; must be even
nydirty: int
    y resolution of the dirty image; must be even
epsilon: float
    required accuracy for the gridding/degridding step
    Must be >= 2e-13.
pixsize_x: float
    Pixel size in x direction (radians)
pixsize_y: float
    Pixel size in y direction (radians)
Martin Reinecke's avatar
Martin Reinecke committed
308
309
nthreads: int
    the number of threads to use for all calculations involving this object.
310
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
311
class PyGridderConfig: public GridderConfig
Martin Reinecke's avatar
Martin Reinecke committed
312
313
  {
  public:
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
314
    using GridderConfig::GridderConfig;
Martin Reinecke's avatar
Martin Reinecke committed
315
    PyGridderConfig(size_t nxdirty, size_t nydirty, double epsilon,
Martin Reinecke's avatar
Martin Reinecke committed
316
      double pixsize_x, double pixsize_y, size_t nthreads)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
317
318
      : GridderConfig(nxdirty, nydirty, epsilon, pixsize_x, pixsize_y, nthreads) {}

Martin Reinecke's avatar
Martin Reinecke committed
319
    template<typename T> pyarr<T> apply_taper2(const pyarr<T> &img, bool divide) const
Martin Reinecke's avatar
Martin Reinecke committed
320
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
321
      auto res = makeArray<T>({nx_dirty, ny_dirty});
Martin Reinecke's avatar
Martin Reinecke committed
322
323
      auto img2 = make_const_mav<2>(img);
      auto res2 = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
324
325
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
326
      GridderConfig::apply_taper(img2, res2, divide);
Martin Reinecke's avatar
Martin Reinecke committed
327
      }
Martin Reinecke's avatar
Martin Reinecke committed
328
329
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
330
331
332
333
334
335
336
337
338
    py::array apply_taper(const py::array &img, bool divide) const
      {
      if (isPytype<complex<float>>(img))
        return apply_taper2<float>(img, divide);
      if (isPytype<complex<double>>(img))
        return apply_taper2<double>(img, divide);
      myfail("type matching failed: 'img' has neither type 'f4' nor 'f8'");
      }
    template<typename T> pyarr<T> grid2dirty2(const pyarr<T> &grid) const
339
340
341
342
343
344
      {
      auto res = makeArray<T>({nx_dirty, ny_dirty});
      auto grid2=make_const_mav<2>(grid);
      auto res2=make_mav<2>(res);
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
345
      GridderConfig::grid2dirty(grid2,res2);
346
347
348
      }
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
349
350
351
352
353
354
355
356
357
358
    py::array grid2dirty(const py::array &grid) const
      {
      if (isPytype<float>(grid))
        return grid2dirty2<float>(grid);
      if (isPytype<double>(grid))
        return grid2dirty2<double>(grid);
      myfail("type matching failed: 'grid' has neither type 'f4' nor 'f8'");
      }
    template<typename T> pyarr<complex<T>> grid2dirty_c2
      (const pyarr<complex<T>> &grid) const
Martin Reinecke's avatar
Martin Reinecke committed
359
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
360
      auto res = makeArray<complex<T>>({nx_dirty, ny_dirty});
Martin Reinecke's avatar
Martin Reinecke committed
361
362
      auto grid2=make_const_mav<2>(grid);
      auto res2=make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
363
364
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
365
      GridderConfig::grid2dirty_c(grid2,res2);
Martin Reinecke's avatar
Martin Reinecke committed
366
      }
367
368
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
369
370
371
372
373
374
375
376
    py::array grid2dirty_c(const py::array &grid) const
      {
      if (isPytype<complex<float>>(grid))
        return grid2dirty_c2<float>(grid);
      if (isPytype<complex<double>>(grid))
        return grid2dirty_c2<double>(grid);
      myfail("type matching failed: 'grid' has neither type 'c8' nor 'c16'");
      }
377

Martin Reinecke's avatar
Martin Reinecke committed
378
    template<typename T> pyarr<T> dirty2grid2(const pyarr<T> &dirty) const
379
380
381
382
383
384
      {
      auto dirty2 = make_const_mav<2>(dirty);
      auto grid = makeArray<T>({nu, nv});
      auto grid2=make_mav<2>(grid);
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
385
      GridderConfig::dirty2grid(dirty2, grid2);
386
387
388
      }
      return grid;
      }
Martin Reinecke's avatar
Martin Reinecke committed
389
390
391
392
393
394
395
396
397
    py::array dirty2grid(const py::array &dirty) const
      {
      if (isPytype<float>(dirty))
        return dirty2grid2<float>(dirty);
      if (isPytype<double>(dirty))
        return dirty2grid2<double>(dirty);
      myfail("type matching failed: 'dirty' has neither type 'f4' nor 'f8'");
      }
    template<typename T> pyarr<complex<T>> dirty2grid_c2(const pyarr<complex<T>> &dirty) const
398
      {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
399
400
401
      auto dirty2 = make_const_mav<2>(dirty);
      auto grid = makeArray<complex<T>>({nu, nv});
      auto grid2=make_mav<2>(grid);
Martin Reinecke's avatar
Martin Reinecke committed
402
403
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
404
      GridderConfig::dirty2grid_c(dirty2, grid2);
Martin Reinecke's avatar
Martin Reinecke committed
405
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
406
      return grid;
407
      }
Martin Reinecke's avatar
Martin Reinecke committed
408
409
410
411
412
413
414
415
416
417
    py::array dirty2grid_c(const py::array &dirty) const
      {
      if (isPytype<complex<float>>(dirty))
        return dirty2grid_c2<float>(dirty);
      if (isPytype<complex<double>>(dirty))
        return dirty2grid_c2<double>(dirty);
      myfail("type matching failed: 'dirty' has neither type 'c8' nor 'c16'");
      }
    template<typename T> pyarr<complex<T>> apply_wscreen2
      (const pyarr<complex<T>> &dirty, double w, bool adjoint) const
Martin Reinecke's avatar
test1    
Martin Reinecke committed
418
      {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
419
420
421
      auto dirty2 = make_const_mav<2>(dirty);
      auto res = makeArray<complex<T>>({nx_dirty, ny_dirty});
      auto res2 = make_mav<2>(res);
Martin Reinecke's avatar
test1    
Martin Reinecke committed
422
423
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
424
      GridderConfig::apply_wscreen(dirty2, res2, w, adjoint);
425
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
426
      return res;
427
      }
Martin Reinecke's avatar
Martin Reinecke committed
428
429
430
431
432
433
434
435
    py::array apply_wscreen(const py::array &dirty, double w, bool adjoint) const
      {
      if (isPytype<complex<float>>(dirty))
        return apply_wscreen2<float>(dirty, w, adjoint);
      if (isPytype<complex<double>>(dirty))
        return apply_wscreen2<double>(dirty, w, adjoint);
      myfail("type matching failed: 'dirty' has neither type 'c8' nor 'c16'");
      }
Martin Reinecke's avatar
Martin Reinecke committed
436
437
  };

Martin Reinecke's avatar
import  
Martin Reinecke committed
438

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
constexpr auto vis2grid_c_DS = R"""(
Grids visibilities onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
vis: np.array((nvis,), dtype=np.complex)
    The visibility data for the index array
grid_in: np.array((nu,nv), dtype=np.complex128), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
455
456
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
457
458
459
460
461
462

Returns
=======
np.array((nu,nv), dtype=np.complex128):
    the gridded visibilities
)""";
Martin Reinecke's avatar
updates    
Martin Reinecke committed
463
template<typename T> pyarr<complex<T>> Pyvis2grid_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
464
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
465
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &vis_,
Martin Reinecke's avatar
Martin Reinecke committed
466
  py::object &grid_in, const py::object &wgt_)
467
  {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
468
469
470
  auto vis2 = make_const_mav<1>(vis_);
  size_t nvis = vis2.shape(0);
  auto idx2 = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
471
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
472
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
473
  auto res = provideArray<complex<T>>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
474
  auto grid = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
475
476
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
477
  vis2grid_c<T>(baselines, gconf, idx2, vis2, grid, wgt2);
Martin Reinecke's avatar
Martin Reinecke committed
478
  }
479
480
481
  return res;
  }

482
483
484
485
486
487
488
489
490
491
492
493
494
495
constexpr auto vis2grid_DS = R"""(
Grids visibilities onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
vis: np.array((nvis,), dtype=np.complex)
    The visibility data for the index array
Martin Reinecke's avatar
Martin Reinecke committed
496
497
grid_in: np.array((nu,nv), dtype=np.float64), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
498
499
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
500
501
502
503
504
505

Returns
=======
np.array((nu,nv), dtype=np.float64):
    the gridded visibilities (made real by making use of Hermitian symmetry)
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
506
507
template<typename T> pyarr<T> Pyvis2grid(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
508
509
510
  const pyarr<complex<T>> &vis_, py::object &grid_in, const py::object &wgt_)
  {
  auto tmp=Pyvis2grid_c(baselines, gconf, idx_, vis_, None, wgt_);
Martin Reinecke's avatar
Martin Reinecke committed
511
  auto grd=provideArray<T>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
Martin Reinecke's avatar
Martin Reinecke committed
512
513
  {
  py::gil_scoped_release release;
514
  gridder::detail::complex2hartley(make_const_mav<2>(tmp), make_mav<2>(grd), gconf.Nthreads());
Martin Reinecke's avatar
Martin Reinecke committed
515
  }
516
517
  return grd;
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
constexpr auto ms2grid_c_DS = R"""(
Grids measurement set data onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
ms: np.array((nrows, nchannels), dtype=np.complex128)
    the measurement set.
grid_in: np.array((nu,nv), dtype=np.complex128), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
535
536
wgt: np.array((nrows, nchannels), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
537
538
539
540
541
542

Returns
=======
np.array((nu,nv), dtype=np.complex128):
    the gridded visibilities
)""";
Martin Reinecke's avatar
updates    
Martin Reinecke committed
543
template<typename T> pyarr<complex<T>> Pyms2grid_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
544
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
545
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &ms_,
Martin Reinecke's avatar
Martin Reinecke committed
546
  py::object &grid_in, const py::object &wgt_)
Martin Reinecke's avatar
merge    
Martin Reinecke committed
547
548
549
  {
  auto nrows = baselines.Nrows();
  auto nchan = baselines.Nchannels();
Martin Reinecke's avatar
updates    
Martin Reinecke committed
550
551
  auto ms2 = make_const_mav<2>(ms_);
  auto idx2 = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
552
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
553
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
554
  auto res = provideArray<complex<T>>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
555
  auto grid = make_mav<2>(res);
Martin Reinecke's avatar
Martin Reinecke committed
556
557
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
558
  ms2grid_c<T>(baselines, gconf, idx2, ms2, grid, wgt2);
Martin Reinecke's avatar
Martin Reinecke committed
559
  }
Martin Reinecke's avatar
merge    
Martin Reinecke committed
560
561
562
  return res;
  }

563
template<typename T> pyarr<T> Pyms2grid(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
564
  const PyBaselines &baselines, const PyGridderConfig &gconf,
565
566
567
568
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &ms_,
  py::object &grid_in, const py::object &wgt_)
  {
  auto tmp = Pyms2grid_c(baselines, gconf, idx_, ms_, None, wgt_);
Martin Reinecke's avatar
Martin Reinecke committed
569
  auto res_ = provideArray<T>(grid_in, "grid_in", {gconf.Nu(), gconf.Nv()});
570
  auto res = make_mav<2>(res_);
Martin Reinecke's avatar
Martin Reinecke committed
571
572
  {
  py::gil_scoped_release release;
573
  gridder::detail::complex2hartley(make_const_mav<2>(tmp), res, gconf.Nthreads());
Martin Reinecke's avatar
Martin Reinecke committed
574
  }
575
576
577
  return res_;
  }

Martin Reinecke's avatar
updates    
Martin Reinecke committed
578
template<typename T> pyarr<complex<T>> Pygrid2vis_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
579
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
580
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &grid_,
Martin Reinecke's avatar
Martin Reinecke committed
581
  const py::object &wgt_)
582
  {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
583
584
585
  auto grid2 = make_const_mav<2>(grid_);
  auto idx2 = make_const_mav<1>(idx_);
  size_t nvis = idx2.shape(0);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
586
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
587
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
588
  auto res = makeArray<complex<T>>({nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
589
  auto vis = make_mav<1>(res);
590
  vis.fill(0);
Martin Reinecke's avatar
Martin Reinecke committed
591
592
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
593
  grid2vis_c<T>(baselines, gconf, idx2, grid2, vis, wgt2);
Martin Reinecke's avatar
Martin Reinecke committed
594
  }
595
596
597
  return res;
  }

598
599
600
601
602
603
604
605
606
607
608
609
610
611
constexpr auto grid2vis_DS = R"""(
Degrids visibilities from a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be degridded
grid: np.array((nu,nv), dtype=np.float64):
    the gridded visibilities (made real by making use of Hermitian symmetry)
Martin Reinecke's avatar
Martin Reinecke committed
612
613
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
614
615
616
617
618
619

Returns
=======
np.array((nvis,), dtype=np.complex)
    The degridded visibility data
)""";
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
620
621
template<typename T> pyarr<complex<T>> Pygrid2vis(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
622
623
624
625
626
627
628
  const pyarr<T> &grid_, const py::object &wgt_)
  {
  auto tmp=makeArray<complex<T>>({gconf.Nu(), gconf.Nv()});
  gridder::detail::hartley2complex(make_const_mav<2>(grid_),make_mav<2>(tmp), gconf.Nthreads());
  return Pygrid2vis_c(baselines, gconf, idx_, tmp, wgt_);
  }

Martin Reinecke's avatar
updates    
Martin Reinecke committed
629
template<typename T> pyarr<complex<T>> Pygrid2ms_c(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
630
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
updates    
Martin Reinecke committed
631
632
633
634
635
636
637
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &grid_,
  py::object &ms_in, const py::object &wgt_)
  {
  auto nrows = baselines.Nrows();
  auto nchan = baselines.Nchannels();
  auto grid2 = make_const_mav<2>(grid_);
  auto idx2 = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
638
  pyarr<T> wgt = providePotentialArray<T>(wgt_, "wgt", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
639
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
640
  auto res = provideArray<complex<T>>(ms_in, "ms_in", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
641
642
643
644
645
646
647
  auto ms = make_mav<2>(res);
  {
  py::gil_scoped_release release;
  grid2ms_c<T>(baselines, gconf, idx2, grid2, ms, wgt2);
  }
  return res;
  }
Martin Reinecke's avatar
merge    
Martin Reinecke committed
648

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
649
650
template<typename T> pyarr<complex<T>> Pygrid2ms(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
651
652
653
654
655
656
657
658
  const pyarr<T> &grid_, py::object &ms_in, const py::object &wgt_)
  {
  auto grid2_ = makeArray<complex<T>>({gconf.Nu(), gconf.Nv()});
  auto grid2 = make_mav<2>(grid2_);
  gridder::detail::hartley2complex(make_const_mav<2>(grid_), grid2, gconf.Nthreads());
  return Pygrid2ms_c(baselines, gconf, idx_, grid2_, ms_in, wgt_);
  }

Martin Reinecke's avatar
Martin Reinecke committed
659
template<typename T> pyarr<complex<T>> apply_holo2(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
660
  const PyBaselines &baselines, const PyGridderConfig &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
661
  const py::array &idx_, const py::array &grid_, const py::object &wgt_)
662
  {
Martin Reinecke's avatar
Martin Reinecke committed
663
664
665
666
667
668
669
670
  auto idx = getPyarr<uint32_t>(idx_, "idx");
  auto idx2 = make_const_mav<1>(idx);
  auto grid = getPyarr<complex<T>>(grid_, "grid");
  auto grid2 = make_const_mav<2>(grid);
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {idx2.shape(0)});
  auto wgt2 = make_const_mav<1>(wgt);
  auto res = makeArray<complex<T>>({grid2.shape(0),grid2.shape(1)});
  auto res2 = make_mav<2>(res);
671
672
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
673
  apply_holo(baselines, gconf, idx2, grid2, res2, wgt2);
674
675
676
  }
  return res;
  }
Martin Reinecke's avatar
Martin Reinecke committed
677
678
679
680
681
682
683
684
685
686
py::array Pyapply_holo(
  const PyBaselines &baselines, const PyGridderConfig &gconf,
  const py::array &idx, const py::array &grid, const py::object &wgt)
  {
  if (isPytype<complex<float>>(grid))
    return apply_holo2<float>(baselines, gconf, idx, grid, wgt);
  if (isPytype<complex<double>>(grid))
    return apply_holo2<double>(baselines, gconf, idx, grid, wgt);
  myfail("type matching failed: 'grid' has neither type 'c8' nor 'c16'");
  }
687

Martin Reinecke's avatar
Martin Reinecke committed
688
template<typename T> pyarr<T> Pyget_correlations(
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
689
  const PyBaselines &baselines, const PyGridderConfig &gconf,
690
  const pyarr<uint32_t> &idx_, int du, int dv, const py::object &wgt_)
691
  {
Martin Reinecke's avatar
Martin Reinecke committed
692
  auto idx = make_const_mav<1>(idx_);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
693
  pyarr<T> wgt2 = providePotentialArray<T>(wgt_, "wgt", {idx.shape(0)});
Martin Reinecke's avatar
Martin Reinecke committed
694
695
696
697
  auto wgt=make_const_mav<1>(wgt2);

  auto res = makeArray<T>({gconf.Nu(),gconf.Nv()});
  auto ogrid = make_mav<2>(res);
698
699
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
700
  get_correlations(baselines, gconf, idx, du, dv, ogrid, wgt);
701
702
703
704
  }
  return res;
  }

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
constexpr auto getIndices_DS = R"""(
Selects a subset of entries from a `Baselines` object.

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used with the returned indices.
    (used to optimize the ordering of the indices)
flags: np.array((nrows, nchannels), dtype=np.bool)
    "True" indicates that the value should not be used
chbegin: int
    first channel to use (-1: start with the first available channel)
chend: int
    one-past last channel to use (-1: one past the last available channel)
wmin: float
    only select entries with w>=wmin
wmax: float
    only select entries with w<wmax

Returns
=======
np.array((nvis,), dtype=np.uint32)
    the compressed indices for all entries which match the selected criteria
    and are not flagged.
)""";
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
732
pyarr<uint32_t> PygetIndices(const PyBaselines &baselines,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
733
  const PyGridderConfig &gconf, const pyarr<bool> &flags_, int chbegin,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
734
  int chend, double wmin, double wmax)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
735
  {
736
737
  size_t nidx;
  auto flags = make_const_mav<2>(flags_);
Martin Reinecke's avatar
Martin Reinecke committed
738
739
  {
  py::gil_scoped_release release;
740
  nidx = getIdxSize(baselines, flags, chbegin, chend, wmin, wmax, gconf.Nthreads());
Martin Reinecke's avatar
Martin Reinecke committed
741
  }
742
743
  auto res = makeArray<uint32_t>({nidx});
  auto res2 = make_mav<1>(res);
Martin Reinecke's avatar
Martin Reinecke committed
744
745
  {
  py::gil_scoped_release release;
746
  fillIdx(baselines, gconf, flags, chbegin, chend, wmin, wmax, res2);
Martin Reinecke's avatar
Martin Reinecke committed
747
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
748
749
750
  return res;
  }

Martin Reinecke's avatar
Martin Reinecke committed
751
752
template<typename T> pyarr<T> vis2dirty2(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const py::array &idx_,
753
  const py::array &vis_, const py::object &wgt_, bool do_wstacking)
Martin Reinecke's avatar
Martin Reinecke committed
754
  {
Martin Reinecke's avatar
Martin Reinecke committed
755
756
757
758
759
760
  auto idx = getPyarr<uint32_t>(idx_, "idx");
  auto idx2 = make_const_mav<1>(idx);
  auto dirty = makeArray<T>({gconf.Nxdirty(), gconf.Nydirty()});
  auto dirty2 = make_mav<2>(dirty);
  auto vis = getPyarr<complex<T>>(vis_, "vis");
  auto vis2 = make_const_mav<1>(vis);
761
762
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {idx2.shape(0)});
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
763
764
  {
  py::gil_scoped_release release;
765
  vis2dirty<T>(baselines, gconf, idx2, vis2, wgt2, dirty2, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
766
  }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
767
  return dirty;
Martin Reinecke's avatar
Martin Reinecke committed
768
  }
Martin Reinecke's avatar
Martin Reinecke committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

constexpr auto vis2dirty_DS = R"""(
Converts an array of visibilities to a dirty image.

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the provided visibilities
vis: np.array(nvis,), dtype=np.complex64 or np.complex128)
    The input visibilities
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nvis,), dtype=float with same precision as `vis`, optional
    If present, visibilities are multiplied by the corresponding entries.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.

Returns
=======
np.array((nxdirty, nydirty), dtype=float of same precision as `vis`.)
    The dirty image
)""";

Martin Reinecke's avatar
Martin Reinecke committed
798
799
py::array Pyvis2dirty(const PyBaselines &baselines,
  const PyGridderConfig &gconf, const py::array &idx,
800
  const py::array &vis, const py::object &wgt, bool do_wstacking)
Martin Reinecke's avatar
Martin Reinecke committed
801
802
  {
  if (isPytype<complex<float>>(vis))
803
    return vis2dirty2<float>(baselines, gconf, idx, vis, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
804
  if (isPytype<complex<double>>(vis))
805
    return vis2dirty2<double>(baselines, gconf, idx, vis, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
806
807
  myfail("type matching failed: 'vis' has neither type 'c8' nor 'c16'");
  }
Martin Reinecke's avatar
Martin Reinecke committed
808

Martin Reinecke's avatar
Martin Reinecke committed
809
template<typename T> pyarr<complex<T>> dirty2vis2(const PyBaselines &baselines,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
810
  const PyGridderConfig &gconf, const pyarr<uint32_t> &idx_,
811
  const pyarr<T> &dirty_, const py::object &wgt_, bool do_wstacking)
812
  {
Martin Reinecke's avatar
Martin Reinecke committed
813
814
815
816
  auto idx = getPyarr<uint32_t>(idx_, "idx");
  auto idx2 = make_const_mav<1>(idx);
  auto dirty = getPyarr<T>(dirty_, "dirty");
  auto dirty2 = make_const_mav<2>(dirty_);
817
818
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {idx2.shape(0)});
  auto wgt2 = make_const_mav<1>(wgt);
Martin Reinecke's avatar
Martin Reinecke committed
819
820
  auto vis = makeArray<complex<T>>({idx2.shape(0)});
  auto vis2 = make_mav<1>(vis);
821
  vis2.fill(0);
822
823
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
824
  vis2.fill(0);
825
  dirty2vis<T>(baselines, gconf, idx2, dirty2, wgt2, vis2, do_wstacking);
826
827
828
  }
  return vis;
  }
Martin Reinecke's avatar
Martin Reinecke committed
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

constexpr auto dirty2vis_DS = R"""(
Converts a dirty image into a 1D array of visibilities.

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the visibilities to be computed
dirty: np.array((nxdirty, nydirty), dtype=np.float32 or np.float64)
    dirty image
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nvis,), same dtype as `dirty`, optional
    If present, visibilities are multiplied by the corresponding entries.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.

Returns
=======
np.array((nvis,), dtype=complex of same precision as `dirty`.)
    The visibility data
)""";
Martin Reinecke's avatar
Martin Reinecke committed
857
py::array Pydirty2vis(const PyBaselines &baselines,
858
859
  const PyGridderConfig &gconf, const py::array &idx, const py::array &dirty,
  const py::object &wgt, bool do_wstacking)
Martin Reinecke's avatar
Martin Reinecke committed
860
861
  {
  if (isPytype<float>(dirty))
862
    return dirty2vis2<float>(baselines, gconf, idx, dirty, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
863
  if (isPytype<double>(dirty))
864
    return dirty2vis2<double>(baselines, gconf, idx, dirty, wgt, do_wstacking);
Martin Reinecke's avatar
Martin Reinecke committed
865
866
  myfail("type matching failed: 'dirty' has neither type 'f4' nor 'f8'");
  }
867

Martin Reinecke's avatar
Martin Reinecke committed
868
template<typename T> py::array ms2dirty2(const py::array &uvw_,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
869
  const py::array &freq_, const py::array &ms_, const py::object &wgt_,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
870
  size_t npix_x, size_t npix_y, double pixsize_x, double pixsize_y, double epsilon,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
871
  bool do_wstacking, size_t nthreads, size_t verbosity)
872
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
873
  auto uvw = getPyarr<double>(uvw_, "uvw");
874
  auto uvw2 = make_const_mav<2>(uvw);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
875
  auto freq = getPyarr<double>(freq_, "freq");
876
  auto freq2 = make_const_mav<1>(freq);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
877
  auto ms = getPyarr<complex<T>>(ms_, "ms");
878
  auto ms2 = make_const_mav<2>(ms);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
879
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {ms2.shape(0),ms2.shape(1)});
880
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
881
882
  auto dirty = makeArray<T>({npix_x,npix_y});
  auto dirty2 = make_mav<2>(dirty);
Martin Reinecke's avatar
Martin Reinecke committed
883
884
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
885
  ms2dirty(uvw2,freq2,ms2,wgt2,pixsize_x,pixsize_y,epsilon,do_wstacking,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
886
    nthreads,dirty2,verbosity);
Martin Reinecke's avatar
Martin Reinecke committed
887
  }
888
889
890
  return dirty;
  }

Martin Reinecke's avatar
Martin Reinecke committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
constexpr auto ms2dirty_DS = R"""(
Converts an MS object to dirty image.

Parameters
==========
uvw: np.array((nrows, 3), dtype=np.float64)
    UVW coordinates from the measurement set
freq: np.array((nchan,), dtype=np.float64)
    channel frequencies
ms: np.array((nrows, nchan,), dtype=np.complex64 or np.complex128)
    the input measurement set data.
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nrows, nchan), float with same precision as `ms`), optional
    If present, its values are multiplied to the output
npix_x, npix_y: int
    dimensions of the dirty image
pixsize_x, pixsize_y: float
    angular pixel size (in radians) of the dirty image
epsilon: float
    accuracy at which the computation should be done. Must be larger than 2e-13.
    If `ms` has type np.complex64, it must be larger than 1e-5.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.
nthreads: int
    number of threads to use for the calculation
verbosity: int
    0: no output
    1: some output
    2: detailed output

Returns
=======
np.array((nxdirty, nydirty), dtype=float of same precision as `ms`)
    the dirty image
)""";
Martin Reinecke's avatar
Martin Reinecke committed
928
py::array Pyms2dirty(const py::array &uvw,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
929
  const py::array &freq, const py::array &ms, const py::object &wgt,
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
930
  size_t npix_x, size_t npix_y, double pixsize_x, double pixsize_y, double epsilon,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
931
  bool do_wstacking, size_t nthreads, size_t verbosity)
Martin Reinecke's avatar
Martin Reinecke committed
932
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
933
  if (isPytype<complex<float>>(ms))
Martin Reinecke's avatar
Martin Reinecke committed
934
    return ms2dirty2<float>(uvw, freq, ms, wgt, npix_x, npix_y,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
935
936
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  if (isPytype<complex<double>>(ms))
Martin Reinecke's avatar
Martin Reinecke committed
937
    return ms2dirty2<double>(uvw, freq, ms, wgt, npix_x, npix_y,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
938
939
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  myfail("type matching failed: 'ms' has neither type 'c8' nor 'c16'");
Martin Reinecke's avatar
Martin Reinecke committed
940
941
  }

Martin Reinecke's avatar
Martin Reinecke committed
942
template<typename T> py::array dirty2ms2(const py::array &uvw_,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
943
944
945
  const py::array &freq_, const py::array &dirty_, const py::object &wgt_,
  double pixsize_x, double pixsize_y, double epsilon,
  bool do_wstacking, size_t nthreads, size_t verbosity)
Martin Reinecke's avatar
Martin Reinecke committed
946
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
947
  auto uvw = getPyarr<double>(uvw_, "uvw");
Martin Reinecke's avatar
Martin Reinecke committed
948
  auto uvw2 = make_const_mav<2>(uvw);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
949
  auto freq = getPyarr<double>(freq_, "freq");
Martin Reinecke's avatar
Martin Reinecke committed
950
  auto freq2 = make_const_mav<1>(freq);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
951
  auto dirty = getPyarr<T>(dirty_, "dirty");
Martin Reinecke's avatar
Martin Reinecke committed
952
  auto dirty2 = make_const_mav<2>(dirty);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
953
  auto wgt = providePotentialArray<T>(wgt_, "wgt", {uvw2.shape(0),freq2.shape(0)});
Martin Reinecke's avatar
Martin Reinecke committed
954
  auto wgt2 = make_const_mav<2>(wgt);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
955
956
  auto ms = makeArray<complex<T>>({uvw2.shape(0),freq2.shape(0)});
  auto ms2 = make_mav<2>(ms);
Martin Reinecke's avatar
Martin Reinecke committed
957
958
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
959
  dirty2ms(uvw2,freq2,dirty2,wgt2,pixsize_x,pixsize_y,epsilon,do_wstacking,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
960
    nthreads,ms2,verbosity);
Martin Reinecke's avatar
Martin Reinecke committed
961
  }
Martin Reinecke's avatar
Martin Reinecke committed
962
963
964
  return ms;
  }

Martin Reinecke's avatar
Martin Reinecke committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
constexpr auto dirty2ms_DS = R"""(
Converts a dirty image to an MS object.

Parameters
==========
uvw: np.array((nrows, 3), dtype=np.float64)
    UVW coordinates from the measurement set
freq: np.array((nchan,), dtype=np.float64)
    channel frequencies
dirty: np.array((nxdirty, nydirty), dtype=np.float32 or np.float64)
    dirty image
    Its data type determines the precision in which the calculation is carried
    out.
wgt: np.array((nrows, nchan), same dtype as `dirty`), optional
    If present, its values are multiplied to the output
pixsize_x, pixsize_y: float
    angular pixel size (in radians) of the dirty image
epsilon: float
    accuracy at which the computation should be done. Must be larger than 2e-13.
    If `dirty` has type np.float32, it must be larger than 1e-5.
do_wstacking: bool
    if True, the full improved w-stacking algorithm is carried out, otherwise
    the w values are assumed to be zero.
nthreads: int
    number of threads to use for the calculation
verbosity: int
    0: no output
    1: some output
    2: detailed output

Returns
=======
np.array((nrows, nchan,), dtype=complex of same precision as `dirty`)
    the measurement set data.
)""";
Martin Reinecke's avatar
Martin Reinecke committed
1000
py::array Pydirty2ms(const py::array &uvw,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
1001
1002
1003
1004
1005
  const py::array &freq, const py::array &dirty, const py::object &wgt,
  double pixsize_x, double pixsize_y, double epsilon,
  bool do_wstacking, size_t nthreads, size_t verbosity)
  {
  if (isPytype<float>(dirty))
Martin Reinecke's avatar
Martin Reinecke committed
1006
    return dirty2ms2<float>(uvw, freq, dirty, wgt,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
1007
1008
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  if (isPytype<double>(dirty))
Martin Reinecke's avatar
Martin Reinecke committed
1009
    return dirty2ms2<double>(uvw, freq, dirty, wgt,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
1010
1011
1012
1013
      pixsize_x, pixsize_y, epsilon, do_wstacking, nthreads, verbosity);
  myfail("type matching failed: 'dirty' has neither type 'f4' nor 'f8'");
  }

Martin Reinecke's avatar
import  
Martin Reinecke committed
1014
1015
1016
1017
} // unnamed namespace

PYBIND11_MODULE(nifty_gridder, m)
  {
1018
1019
  using namespace pybind11::literals;

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1020
  py::class_<PyBaselines> (m, "Baselines", PyBaselines_DS)
Martin Reinecke's avatar
Martin Reinecke committed
1021
    .def(py::init<const pyarr<double> &, const pyarr<double> &>(),
1022
      "coord"_a, "freq"_a)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1023
1024
1025
1026
1027
1028
1029
1030
    .def ("Nrows",&PyBaselines::Nrows)
    .def ("Nchannels",&PyBaselines::Nchannels)
    .def ("ms2vis",&PyBaselines::ms2vis<complex<double>>,
      PyBaselines::ms2vis_DS, "ms"_a, "idx"_a, "nthreads"_a=1)
    .def ("effectiveuvw",&PyBaselines::effectiveuvw<double>, "idx"_a)
    .def ("vis2ms",&PyBaselines::vis2ms<complex<double>>,
      PyBaselines::vis2ms_DS, "vis"_a, "idx"_a, "ms_in"_a=None, "nthreads"_a=1);
  py::class_<PyGridderConfig> (m, "GridderConfig", GridderConfig_DS)
Martin Reinecke's avatar
Martin Reinecke committed
1031
1032
    .def(py::init<size_t, size_t, double, double, double, size_t>(),"nxdirty"_a,
      "nydirty"_a, "epsilon"_a, "pixsize_x"_a, "pixsize_y"_a, "nthreads"_a=1)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1033
1034
1035
1036
1037
1038
1039
1040
    .def("Nxdirty", &PyGridderConfig::Nxdirty)
    .def("Nydirty", &PyGridderConfig::Nydirty)
    .def("Epsilon", &PyGridderConfig::Epsilon)
    .def("Pixsize_x", &PyGridderConfig::Pixsize_x)
    .def("Pixsize_y", &PyGridderConfig::Pixsize_y)
    .def("Nu", &PyGridderConfig::Nu)
    .def("Nv", &PyGridderConfig::Nv)
    .def("Supp", &PyGridderConfig::Supp)
Martin Reinecke's avatar
Martin Reinecke committed
1041
    .def("apply_taper", &PyGridderConfig::apply_taper, apply_taper_DS,
Martin Reinecke's avatar
Martin Reinecke committed
1042
      "img"_a, "divide"_a=false)
Martin Reinecke's avatar
Martin Reinecke committed
1043
     .def("grid2dirty", &PyGridderConfig::grid2dirty,
1044
        grid2dirty_DS, "grid"_a)
Martin Reinecke's avatar
Martin Reinecke committed
1045
1046
    .def("grid2dirty_c", &PyGridderConfig::grid2dirty_c, "grid"_a)
    .def("dirty2grid", &PyGridderConfig::dirty2grid,
1047
       dirty2grid_DS, "dirty"_a)
Martin Reinecke's avatar
Martin Reinecke committed
1048
1049
    .def("dirty2grid_c", &PyGridderConfig::dirty2grid_c, "dirty"_a)
    .def("apply_wscreen", &PyGridderConfig::apply_wscreen,
Martin Reinecke's avatar
Martin Reinecke committed
1050
      apply_wscreen_DS, "dirty"_a, "w"_a, "adjoint"_a)
1051
1052
1053
1054

    // pickle support
    .def(py::pickle(
        // __getstate__
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1055
        [](const PyGridderConfig & gc) {
1056
1057
          // Encode object state in tuple
          return py::make_tuple(gc.Nxdirty(), gc.Nydirty(), gc.Epsilon(),
Martin Reinecke's avatar
Martin Reinecke committed
1058
                                gc.Pixsize_x(), gc.Pixsize_y(), gc.Nthreads());
1059
1060
1061
        },
        // __setstate__
        [](py::tuple t) {
Martin Reinecke's avatar
Martin Reinecke committed
1062
          myassert(t.size()==6,"Invalid state");
1063
1064

          // Reconstruct from tuple
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
1065
1066
1067
          return PyGridderConfig(t[0].cast<size_t>(), t[1].cast<size_t>(),
                                 t[2].cast<double>(), t[3].cast<double>(),
                                 t[4].cast<double>(), t[5].cast<size_t>());
1068
1069