nifty_gridder.cc 45.7 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
 *  This file is part of nifty_gridder.
 *
 *  nifty_gridder is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  nifty_gridder is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
Martin Reinecke's avatar
Martin Reinecke committed
15
 *  along with nifty_gridder; if not, write to the Free Software
Martin Reinecke's avatar
Martin Reinecke committed
16
17
18
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

Martin Reinecke's avatar
Martin Reinecke committed
19
20
21
/* Copyright (C) 2019 Max-Planck-Society
   Author: Martin Reinecke */

Martin Reinecke's avatar
import  
Martin Reinecke committed
22
23
24
25
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <iostream>
#include <algorithm>
26
27
#include <cstdlib>
#include <cmath>
Martin Reinecke's avatar
Martin Reinecke committed
28

Martin Reinecke's avatar
updates    
Martin Reinecke committed
29
#include "pocketfft_hdronly.h"
Martin Reinecke's avatar
import  
Martin Reinecke committed
30

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
31
32
#ifdef __GNUC__
#define RESTRICT __restrict__
Martin Reinecke's avatar
Martin Reinecke committed
33
#define NOINLINE __attribute__ ((noinline))
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
34
35
36
37
#else
#define RESTRICT
#endif

Martin Reinecke's avatar
import  
Martin Reinecke committed
38
39
40
41
42
43
using namespace std;

namespace py = pybind11;

namespace {

Martin Reinecke's avatar
Martin Reinecke committed
44
45
auto None = py::none();

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
46
47
48
49
//
// basic utilities
//

50
51
52
53
54
55
void myassert(bool cond, const char *msg)
  {
  if (cond) return;
  throw runtime_error(msg);
  }

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
56
57
58
59
60
61
62
63
64
65
66
/*! Returns the remainder of the division \a v1/v2.
    The result is non-negative.
    \a v1 can be positive or negative; \a v2 must be positive. */
template<typename T> inline T fmodulo (T v1, T v2)
  {
  if (v1>=0)
    return (v1<v2) ? v1 : fmod(v1,v2);
  T tmp=fmod(v1,v2)+v2;
  return (tmp==v2) ? T(0) : tmp;
  }

67
68
69
70
71
72
73
74
75
76
77
78
static size_t nthreads = 1;

constexpr auto set_nthreads_DS = R"""(
Specifies the number of threads to be used by the module

Parameters
==========
nthreads: int
    the number of threads to be used. Must be >=1.
)""";
void set_nthreads(size_t nthreads_)
  {
79
  myassert(nthreads_>=1, "nthreads must be >= 1");
80
81
82
83
84
85
86
87
88
89
90
  nthreads = nthreads_;
  }

constexpr auto get_nthreads_DS = R"""(
Returns the number of threads used by the module

Returns
=======
int : the number of threads used by the module
)""";
size_t get_nthreads()
Martin Reinecke's avatar
Martin Reinecke committed
91
  { return nthreads; }
92

Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
96
//
// Utilities for Gauss-Legendre quadrature
//

Martin Reinecke's avatar
Martin Reinecke committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
static inline double one_minus_x2 (double x)
  { return (fabs(x)>0.1) ? (1.+x)*(1.-x) : 1.-x*x; }

void legendre_prep(int n, vector<double> &x, vector<double> &w)
  {
  constexpr double pi = 3.141592653589793238462643383279502884197;
  constexpr double eps = 3e-14;
  int m = (n+1)>>1;
  x.resize(m);
  w.resize(m);

  double t0 = 1 - (1-1./n) / (8.*n*n);
  double t1 = 1./(4.*n+2.);

111
#pragma omp parallel num_threads(nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
  int i;
#pragma omp for schedule(dynamic,100)
  for (i=1; i<=m; ++i)
    {
    double x0 = cos(pi * ((i<<2)-1) * t1) * t0;

    int dobreak=0;
    int j=0;
    double dpdx;
    while(1)
      {
      double P_1 = 1.0;
      double P0 = x0;
      double dx, x1;

      for (int k=2; k<=n; k++)
        {
        double P_2 = P_1;
        P_1 = P0;
//        P0 = ((2*k-1)*x0*P_1-(k-1)*P_2)/k;
        P0 = x0*P_1 + (k-1.)/k * (x0*P_1-P_2);
        }

      dpdx = (P_1 - x0*P0) * n / one_minus_x2(x0);

      /* Newton step */
      x1 = x0 - P0/dpdx;
      dx = x0-x1;
      x0 = x1;
      if (dobreak) break;

      if (abs(dx)<=eps) dobreak=1;
145
      myassert(++j<100, "convergence problem");
Martin Reinecke's avatar
Martin Reinecke committed
146
147
148
149
150
151
152
153
      }

    x[m-i] = x0;
    w[m-i] = 2. / (one_minus_x2(x0) * dpdx * dpdx);
    }
} // end of parallel region
  }

Martin Reinecke's avatar
Martin Reinecke committed
154
155
156
157
//
// Start of real gridder functionality
//

158
159
template<typename T>
  using pyarr = py::array_t<T>;
160
// The "_c" suffix here stands for "C memory order, contiguous"
161
162
template<typename T>
  using pyarr_c = py::array_t<T, py::array::c_style | py::array::forcecast>;
Martin Reinecke's avatar
import  
Martin Reinecke committed
163

Martin Reinecke's avatar
merge    
Martin Reinecke committed
164
template<typename T> pyarr_c<T> makeArray(const vector<size_t> &shape)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
165
166
  { return pyarr_c<T>(shape); }

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
167
size_t get_w(double epsilon)
Martin Reinecke's avatar
Martin Reinecke committed
168
169
170
171
172
173
174
175
176
177
178
  {
  static const vector<double> maxmaperr { 1e8, 0.32, 0.021, 6.2e-4,
    1.08e-5, 1.25e-7, 8.25e-10, 5.70e-12, 1.22e-13, 2.48e-15, 4.82e-17,
    6.74e-19, 5.41e-21, 4.41e-23, 7.88e-25, 3.9e-26 };

  double epssq = epsilon*epsilon;

  for (size_t i=1; i<maxmaperr.size(); ++i)
    if (epssq>maxmaperr[i]) return i;
  throw runtime_error("requested epsilon too small - minimum is 2e-13");
  }
Martin Reinecke's avatar
Martin Reinecke committed
179

Martin Reinecke's avatar
merge    
Martin Reinecke committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
void checkArray(const py::array &arr, const char *aname,
  const vector<size_t> &shape)
  {
  if (size_t(arr.ndim())!=shape.size())
    {
    cerr << "Array '" << aname << "' has " << arr.ndim() << " dimensions; "
            "expected " << shape.size() << endl;
    throw runtime_error("bad dimensionality");
    }
  for (size_t i=0; i<shape.size(); ++i)
    if ((shape[i]!=0) && (size_t(arr.shape(i))!=shape[i]))
      {
      cerr << "Dimension " << i << " of array '" << aname << "' has size "
           << arr.shape(i) << "; expected " << shape[i] << endl;
      throw runtime_error("bad array size");
      }
  }

Martin Reinecke's avatar
Martin Reinecke committed
198
template<typename T> pyarr<T> provideArray(const py::object &in,
Martin Reinecke's avatar
merge    
Martin Reinecke committed
199
200
  const vector<size_t> &shape)
  {
201
  if (in.is_none())
Martin Reinecke's avatar
merge    
Martin Reinecke committed
202
203
204
205
206
207
208
209
    {
    auto tmp_ = makeArray<T>(shape);
    size_t sz = size_t(tmp_.size());
    auto tmp = tmp_.mutable_data();
    for (size_t i=0; i<sz; ++i)
      tmp[i] = T(0);
    return tmp_;
    }
210
  auto tmp_ = in.cast<pyarr<T>>();
Martin Reinecke's avatar
merge    
Martin Reinecke committed
211
212
213
214
  checkArray(tmp_, "temporary", shape);
  return tmp_;
  }

Martin Reinecke's avatar
Martin Reinecke committed
215
216
217
218
219
220
221
222
223
224
template<typename T> pyarr<T> providePotentialArray(const py::object &in,
  const vector<size_t> &shape)
  {
  if (in.is_none())
    return makeArray<T>(vector<size_t>(shape.size(), 0));
  auto tmp_ = in.cast<pyarr<T>>();
  checkArray(tmp_, "temporary", shape);
  return tmp_;
  }

Martin Reinecke's avatar
Martin Reinecke committed
225
template<typename T> pyarr_c<T> provideCArray(py::object &in,
Martin Reinecke's avatar
merge    
Martin Reinecke committed
226
227
  const vector<size_t> &shape)
  {
228
  if (in.is_none())
Martin Reinecke's avatar
merge    
Martin Reinecke committed
229
230
231
232
233
234
235
236
237
238
239
240
241
    {
    auto tmp_ = makeArray<T>(shape);
    size_t sz = size_t(tmp_.size());
    auto tmp = tmp_.mutable_data();
    for (size_t i=0; i<sz; ++i)
      tmp[i] = T(0);
    return tmp_;
    }
  auto tmp_ = in.cast<pyarr_c<T>>();
  checkArray(tmp_, "temporary", shape);
  return tmp_;
  }

Martin Reinecke's avatar
Martin Reinecke committed
242
template<typename T> pyarr_c<T> complex2hartley
243
  (const pyarr_c<complex<T>> &grid_, py::object &grid_in)
Martin Reinecke's avatar
Martin Reinecke committed
244
  {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
245
  checkArray(grid_, "grid", {0,0});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
246
  size_t nu = size_t(grid_.shape(0)), nv = size_t(grid_.shape(1));
Martin Reinecke's avatar
Martin Reinecke committed
247
248
  auto grid = grid_.data();

249
  auto res = provideCArray<T>(grid_in, {nu, nv});
Martin Reinecke's avatar
Martin Reinecke committed
250
  auto grid2 = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
251
252
  {
  py::gil_scoped_release release;
253
#pragma omp parallel for num_threads(nthreads)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
254
  for (size_t u=0; u<nu; ++u)
Martin Reinecke's avatar
Martin Reinecke committed
255
    {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
256
257
    size_t xu = (u==0) ? 0 : nu-u;
    for (size_t v=0; v<nv; ++v)
Martin Reinecke's avatar
Martin Reinecke committed
258
      {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
259
260
261
      size_t xv = (v==0) ? 0 : nv-v;
      size_t i1 = u*nv+v;
      size_t i2 = xu*nv+xv;
262
263
      grid2[i1] += T(0.5)*(grid[i1].real()+grid[i1].imag()+
                           grid[i2].real()-grid[i2].imag());
Martin Reinecke's avatar
Martin Reinecke committed
264
265
      }
    }
Martin Reinecke's avatar
Martin Reinecke committed
266
  }
Martin Reinecke's avatar
Martin Reinecke committed
267
268
269
  return res;
  }

Martin Reinecke's avatar
Martin Reinecke committed
270
271
template<typename T> pyarr_c<complex<T>> hartley2complex
  (const pyarr_c<T> &grid_)
Martin Reinecke's avatar
Martin Reinecke committed
272
  {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
273
  checkArray(grid_, "grid", {0, 0});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
274
  size_t nu = size_t(grid_.shape(0)), nv = size_t(grid_.shape(1));
Martin Reinecke's avatar
Martin Reinecke committed
275
276
  auto grid = grid_.data();

Martin Reinecke's avatar
merge    
Martin Reinecke committed
277
  auto res=makeArray<complex<T>>({nu, nv});
Martin Reinecke's avatar
Martin Reinecke committed
278
  auto grid2 = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
279
280
  {
  py::gil_scoped_release release;
281
#pragma omp parallel for num_threads(nthreads)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
282
  for (size_t u=0; u<nu; ++u)
Martin Reinecke's avatar
Martin Reinecke committed
283
    {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
284
285
    size_t xu = (u==0) ? 0 : nu-u;
    for (size_t v=0; v<nv; ++v)
Martin Reinecke's avatar
Martin Reinecke committed
286
      {
Martin Reinecke's avatar
updates    
Martin Reinecke committed
287
288
289
      size_t xv = (v==0) ? 0 : nv-v;
      size_t i1 = u*nv+v;
      size_t i2 = xu*nv+xv;
Martin Reinecke's avatar
Martin Reinecke committed
290
291
292
      T v1 = T(0.5)*grid[i1];
      T v2 = T(0.5)*grid[i2];
      grid2[i1] = complex<T>(v1+v2, v1-v2);
Martin Reinecke's avatar
Martin Reinecke committed
293
294
      }
    }
Martin Reinecke's avatar
Martin Reinecke committed
295
  }
Martin Reinecke's avatar
Martin Reinecke committed
296
297
298
  return res;
  }

Martin Reinecke's avatar
Martin Reinecke committed
299
300
301
template<typename T> void hartley2_2D(const pyarr_c<T> &in, pyarr_c<T> &out)
  {
  size_t nu=in.shape(0), nv=in.shape(1);
Martin Reinecke's avatar
Martin Reinecke committed
302
303
304
  pocketfft::stride_t s_i{in.strides(0), in.strides(1)},
                      s_o{out.strides(0), out.strides(1)};
  auto d_i = in.data();
Martin Reinecke's avatar
Martin Reinecke committed
305
  auto ptmp = out.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
306
307
  {
  py::gil_scoped_release release;
308
309
310
  pocketfft::r2r_separable_hartley({nu, nv}, s_i, s_o, {0,1}, d_i, ptmp, T(1),
    nthreads);
#pragma omp parallel for num_threads(nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
311
312
313
314
315
316
317
318
319
320
321
322
323
  for(size_t i=1; i<(nu+1)/2; ++i)
    for(size_t j=1; j<(nv+1)/2; ++j)
       {
       T a = ptmp[i*nv+j];
       T b = ptmp[(nu-i)*nv+j];
       T c = ptmp[i*nv+nv-j];
       T d = ptmp[(nu-i)*nv+nv-j];
       ptmp[i*nv+j] = T(0.5)*(a+b+c-d);
       ptmp[(nu-i)*nv+j] = T(0.5)*(a+b+d-c);
       ptmp[i*nv+nv-j] = T(0.5)*(a+c+d-b);
       ptmp[(nu-i)*nv+nv-j] = T(0.5)*(b+c+d-a);
       }
  }
Martin Reinecke's avatar
Martin Reinecke committed
324
  }
Martin Reinecke's avatar
Martin Reinecke committed
325

Martin Reinecke's avatar
Martin Reinecke committed
326
327
/* Compute correction factors for the ES gridding kernel
   This implementation follows eqs. (3.8) to (3.10) of Barnett et al. 2018 */
Martin Reinecke's avatar
updates    
Martin Reinecke committed
328
vector<double> correction_factors (size_t n, size_t nval, size_t w)
Martin Reinecke's avatar
Martin Reinecke committed
329
330
331
332
333
334
335
336
337
338
  {
  constexpr double pi = 3.141592653589793238462643383279502884197;
  auto beta = 2.3*w;
  auto p = int(1.5*w+2);
  double alpha = pi*w/n;
  vector<double> x, wgt;
  legendre_prep(2*p,x,wgt);
  auto psi = x;
  for (auto &v:psi)
    v = exp(beta*(sqrt(1-v*v)-1.));
Martin Reinecke's avatar
updates    
Martin Reinecke committed
339
  vector<double> res(nval);
340
#pragma omp parallel for schedule(static) num_threads(nthreads)
Martin Reinecke's avatar
Martin Reinecke committed
341
342
343
344
345
  for (size_t k=0; k<nval; ++k)
    {
    double tmp=0;
    for (int i=0; i<p; ++i)
      tmp += wgt[i]*psi[i]*cos(alpha*k*x[i]);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
346
    res[k] = 1./(w*tmp);
Martin Reinecke's avatar
Martin Reinecke committed
347
348
349
350
    }
  return res;
  }

Martin Reinecke's avatar
Martin Reinecke committed
351
template<typename T> struct UVW
Martin Reinecke's avatar
updates    
Martin Reinecke committed
352
  {
Martin Reinecke's avatar
Martin Reinecke committed
353
  T u, v, w;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
354
  UVW () {}
Martin Reinecke's avatar
Martin Reinecke committed
355
356
  UVW (T u_, T v_, T w_) : u(u_), v(v_), w(w_) {}
  UVW operator* (T fct) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
357
358
    { return UVW(u*fct, v*fct, w*fct); }
  };
Martin Reinecke's avatar
Martin Reinecke committed
359

360
361
362
363
364
365
366
367
368
369
constexpr auto Baselines_DS = R"""(
Class storing UVW coordinates and channel information.

Parameters
==========
coord: np.array((nrows, 3), dtype=np.float)
    u, v and w coordinates for each row
freq: np.array((nchannels,), dtype=np.float)
    frequency for each individual channel (in Hz)
)""";
Martin Reinecke's avatar
Martin Reinecke committed
370
template<typename T> class Baselines
Martin Reinecke's avatar
Martin Reinecke committed
371
372
  {
  private:
Martin Reinecke's avatar
Martin Reinecke committed
373
    vector<UVW<T>> coord;
374
    vector<T> f_over_c;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
375
    size_t nrows, nchan;
Martin Reinecke's avatar
Martin Reinecke committed
376
377

  public:
378
    Baselines(const pyarr<T> &coord_, const pyarr<T> &freq_)
Martin Reinecke's avatar
Martin Reinecke committed
379
      {
380
      constexpr double speedOfLight = 299792458.;
Martin Reinecke's avatar
merge    
Martin Reinecke committed
381
      checkArray(coord_, "coord", {0, 3});
382
      checkArray(freq_, "freq", {0});
Martin Reinecke's avatar
Martin Reinecke committed
383
      nrows = coord_.shape(0);
384
      nchan = freq_.shape(0);
Martin Reinecke's avatar
Martin Reinecke committed
385
      myassert(nrows*nchan<(size_t(1)<<32), "too many entries in MS");
386
387
      auto freq = freq_.template unchecked<1>();
      auto cood = coord_.template unchecked<2>();
Martin Reinecke's avatar
Martin Reinecke committed
388
389
      {
      py::gil_scoped_release release;
390
      f_over_c.resize(nchan);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
391
      for (size_t i=0; i<nchan; ++i)
392
        f_over_c[i] = freq(i)/speedOfLight;
Martin Reinecke's avatar
Martin Reinecke committed
393
394
      coord.resize(nrows);
      for (size_t i=0; i<coord.size(); ++i)
395
        coord[i] = UVW<T>(cood(i,0), cood(i,1), cood(i,2));
Martin Reinecke's avatar
Martin Reinecke committed
396
      }
Martin Reinecke's avatar
Martin Reinecke committed
397
398
      }

Martin Reinecke's avatar
Martin Reinecke committed
399
    UVW<T> effectiveCoord(uint32_t index) const
400
401
402
      {
      size_t irow = index/nchan;
      size_t ichan = index-nchan*irow;
403
      return coord[irow]*f_over_c[ichan];
404
405
      }
    UVW<T> effectiveCoord(size_t irow, size_t ichan) const
406
      { return coord[irow]*f_over_c[ichan]; }
Martin Reinecke's avatar
Martin Reinecke committed
407
    size_t Nrows() const { return nrows; }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
408
409
    size_t Nchannels() const { return nchan; }

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    static constexpr auto ms2vis_DS = R"""(
    Extracts visibility data from a measurement for the provided indices.

    Parameters
    ==========
    ms: np.array((nrows, nchannels), dtype=np.complex)
        the measurement set's visibility data
    idx: np.array((nvis,), dtype=np.uint32)
        the indices to be extracted

    Returns
    =======
    np.array((nvis,), dtype=np.complex)
        The visibility data for the index array
    )""";
425

Philipp Arras's avatar
Philipp Arras committed
426
    pyarr_c<T> effectiveuvw(const pyarr_c<uint32_t> &idx_) const
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    {
      checkArray(idx_, "idx", {0});
      size_t nvis = size_t(idx_.shape(0));
      auto idx = idx_.template unchecked<1>();
      auto res_=makeArray<T>({nvis, 3});
      auto res = res_.template mutable_unchecked<2>();
      for (size_t i=0; i<nvis; i++)
        {
          auto uvw = effectiveCoord(idx(i));
          res(i,0) = uvw.u;
          res(i,1) = uvw.v;
          res(i,2) = uvw.w;
        }
      return res_;
    }

443
    template<typename T2> pyarr_c<T2> ms2vis(const pyarr<T2> &ms_,
Martin Reinecke's avatar
updates    
Martin Reinecke committed
444
445
      const pyarr_c<uint32_t> &idx_) const
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
446
447
      checkArray(idx_, "idx", {0});
      checkArray(ms_, "ms", {nrows, nchan});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
448
      size_t nvis = size_t(idx_.shape(0));
449
450
      auto idx = idx_.template unchecked<1>();
      auto ms = ms_.template unchecked<2>();
Martin Reinecke's avatar
updates    
Martin Reinecke committed
451

Martin Reinecke's avatar
merge    
Martin Reinecke committed
452
      auto res=makeArray<T2>({nvis});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
453
      auto vis = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
454
455
      {
      py::gil_scoped_release release;
456
#pragma omp parallel for num_threads(nthreads)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
457
      for (size_t i=0; i<nvis; ++i)
458
459
460
461
462
463
        {
        auto t = idx(i);
        auto row = t/nchan;
        auto chan = t-row*nchan;
        vis[i] = ms(row, chan);
        }
Martin Reinecke's avatar
Martin Reinecke committed
464
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
465
466
467
      return res;
      }

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    static constexpr auto vis2ms_DS = R"""(
    Produces a new MS with the provided visibilities set.

    Parameters
    ==========
    vis: np.array((nvis,), dtype=np.complex)
        The visibility data for the index array
    idx: np.array((nvis,), dtype=np.uint32)
        the indices to be inserted
    ms_in: np.array((nrows, nchannels), dtype=np.complex), optional
        input measurement set to which the visibilities are added.

    Returns
    =======
    np.array((nrows, nchannels), dtype=np.complex)
        the measurement set's visibility data (0 where not covered by idx)
    )""";
485
486
    template<typename T2> pyarr_c<T2> vis2ms(const pyarr<T2> &vis_,
      const pyarr<uint32_t> &idx_, py::object &ms_in) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
487
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
488
      checkArray(vis_, "vis", {0});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
489
      size_t nvis = size_t(vis_.shape(0));
Martin Reinecke's avatar
merge    
Martin Reinecke committed
490
      checkArray(idx_, "idx", {nvis});
491
492
      auto idx = idx_.template unchecked<1>();
      auto vis = vis_.template unchecked<1>();
Martin Reinecke's avatar
updates    
Martin Reinecke committed
493

Martin Reinecke's avatar
merge    
Martin Reinecke committed
494
      auto res = provideArray<T2>(ms_in, {nrows, nchan});
495
      auto ms = res.template mutable_unchecked<2>();
Martin Reinecke's avatar
Martin Reinecke committed
496
497
      {
      py::gil_scoped_release release;
498
#pragma omp parallel for num_threads(nthreads)
Martin Reinecke's avatar
updates    
Martin Reinecke committed
499
      for (size_t i=0; i<nvis; ++i)
500
501
502
503
        {
        auto t = idx(i);
        auto row = t/nchan;
        auto chan = t-row*nchan;
Martin Reinecke's avatar
Martin Reinecke committed
504
        ms(row, chan) += vis(i);
505
        }
Martin Reinecke's avatar
Martin Reinecke committed
506
      }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
507
508
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
509
510
  };

Martin Reinecke's avatar
Martin Reinecke committed
511
512
constexpr int logsquare=4;

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
constexpr auto grid2dirty_DS = R"""(
Converts from UV grid to dirty image (FFT, cropping, correction)

Parameters
==========
grid: np.array((nu, nv), dtype=np.float64)
    gridded UV data

Returns
=======
nd.array((nxdirty, nydirty), dtype=np.float64)
    the dirty image
)""";

constexpr auto dirty2grid_DS = R"""(
Converts from a dirty image to a UV grid (correction, padding, FFT)

Parameters
==========
dirty: nd.array((nxdirty, nydirty), dtype=np.float64)
    the dirty image

Returns
=======
np.array((nu, nv), dtype=np.float64)
    gridded UV data
)""";

Martin Reinecke's avatar
Martin Reinecke committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
constexpr auto apply_taper_DS = R"""(
Applies the taper (or its inverse) to an image

Parameters
==========
img: nd.array((nxdirty, nydirty), dtype=np.float64)
    the image
divide: bool
    if True, the routine dividex by the taper, otherwise it multiplies by it

Returns
=======
np.array((nxdirty, nydirty), dtype=np.float64)
    the image with the taper applied
)""";

Martin Reinecke's avatar
Martin Reinecke committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
constexpr auto apply_wscreen_DS = R"""(
Applies the w screen to an image

Parameters
==========
dirty: nd.array((nxdirty, nydirty), dtype=np.complex128)
    the image
w : float
    the w value to use
adjoint: bool
    if True, apply the complex conjugate of the w screen

Returns
=======
np.array((nxdirty, nydirty), dtype=np.complex128)
    the image with the w screen applied
)""";

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
constexpr auto GridderConfig_DS = R"""(
Class storing information related to the gridding/degridding process.

Parameters
==========
nxdirty: int
    x resolution of the dirty image; must be even
nydirty: int
    y resolution of the dirty image; must be even
epsilon: float
    required accuracy for the gridding/degridding step
    Must be >= 2e-13.
pixsize_x: float
    Pixel size in x direction (radians)
pixsize_y: float
    Pixel size in y direction (radians)
)""";
Martin Reinecke's avatar
Martin Reinecke committed
592
template<typename T> class GridderConfig
Martin Reinecke's avatar
Martin Reinecke committed
593
594
595
  {
  private:
    size_t nx_dirty, ny_dirty;
Martin Reinecke's avatar
Martin Reinecke committed
596
    double eps, psx, psy;
Martin Reinecke's avatar
Martin Reinecke committed
597
    size_t w, nsafe, nu, nv;
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
598
    T beta;
Martin Reinecke's avatar
Martin Reinecke committed
599
    vector<T> cfu, cfv;
Martin Reinecke's avatar
Martin Reinecke committed
600

Martin Reinecke's avatar
Martin Reinecke committed
601
602
603
604
605
606
607
608
609
    complex<T> wscreen(double x, double y, double w, bool adjoint) const
      {
      constexpr double pi = 3.141592653589793238462643383279502884197;
      double n = cos(sqrt(x+y)), xn = 1./n;
      double phase = 2*pi*w*(n-1);
      if (adjoint) phase *= -1;
      return complex<T>(cos(phase)*xn, sin(phase)*xn);
      }

Martin Reinecke's avatar
Martin Reinecke committed
610
611
  public:
    GridderConfig(size_t nxdirty, size_t nydirty, double epsilon,
Martin Reinecke's avatar
Martin Reinecke committed
612
      double pixsize_x, double pixsize_y)
Martin Reinecke's avatar
Martin Reinecke committed
613
614
      : nx_dirty(nxdirty), ny_dirty(nydirty), eps(epsilon),
        psx(pixsize_x), psy(pixsize_y),
Martin Reinecke's avatar
Martin Reinecke committed
615
616
        w(get_w(epsilon)), nsafe((w+1)/2),
        nu(max(2*nsafe,2*nx_dirty)), nv(max(2*nsafe,2*ny_dirty)),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
617
        beta(2.3*w),
Martin Reinecke's avatar
updates    
Martin Reinecke committed
618
        cfu(nx_dirty), cfv(ny_dirty)
Martin Reinecke's avatar
Martin Reinecke committed
619
      {
Martin Reinecke's avatar
Martin Reinecke committed
620
621
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
Martin Reinecke committed
622
623
624
      myassert((nx_dirty&1)==0, "nx_dirty must be even");
      myassert((ny_dirty&1)==0, "ny_dirty must be even");
      myassert(epsilon>0, "epsilon must be positive");
Martin Reinecke's avatar
Martin Reinecke committed
625
626
      myassert(pixsize_x>0, "pixsize_x must be positive");
      myassert(pixsize_y>0, "pixsize_y must be positive");
Martin Reinecke's avatar
updates    
Martin Reinecke committed
627
628
629
630
631
632
633
634
635
636
637

      auto tmp = correction_factors(nu, nx_dirty/2+1, w);
      cfu[nx_dirty/2]=tmp[0];
      cfu[0]=tmp[nx_dirty/2];
      for (size_t i=1; i<nx_dirty/2; ++i)
        cfu[nx_dirty/2-i] = cfu[nx_dirty/2+i] = tmp[i];
      tmp = correction_factors(nv, ny_dirty/2+1, w);
      cfv[ny_dirty/2]=tmp[0];
      cfv[0]=tmp[ny_dirty/2];
      for (size_t i=1; i<ny_dirty/2; ++i)
        cfv[ny_dirty/2-i] = cfv[ny_dirty/2+i] = tmp[i];
Martin Reinecke's avatar
Martin Reinecke committed
638
      }
Martin Reinecke's avatar
Martin Reinecke committed
639
      }
Martin Reinecke's avatar
Martin Reinecke committed
640
641
642
643
644
    size_t Nxdirty() const { return nx_dirty; }
    size_t Nydirty() const { return ny_dirty; }
    double Epsilon() const { return eps; }
    double Pixsize_x() const { return psx; }
    double Pixsize_y() const { return psy; }
Martin Reinecke's avatar
Martin Reinecke committed
645
646
647
    size_t Nu() const { return nu; }
    size_t Nv() const { return nv; }
    size_t W() const { return w; }
648
    size_t Nsafe() const { return nsafe; }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
649
    T Beta() const { return beta; }
650

Martin Reinecke's avatar
Martin Reinecke committed
651
    pyarr_c<T> grid2dirty(const pyarr_c<T> &grid) const
Martin Reinecke's avatar
Martin Reinecke committed
652
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
653
654
      checkArray(grid, "grid", {nu, nv});
      auto tmp = makeArray<T>({nu, nv});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
655
      auto ptmp = tmp.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
656
      hartley2_2D<T>(grid, tmp);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
657
      auto res = makeArray<T>({nx_dirty, ny_dirty});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
658
      auto pout = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
659
660
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
661
662
663
664
665
666
667
668
669
      for (size_t i=0; i<nx_dirty; ++i)
        for (size_t j=0; j<ny_dirty; ++j)
          {
          size_t i2 = nu-nx_dirty/2+i;
          if (i2>=nu) i2-=nu;
          size_t j2 = nv-ny_dirty/2+j;
          if (j2>=nv) j2-=nv;
          pout[ny_dirty*i + j] = ptmp[nv*i2+j2]*cfu[i]*cfv[j];
          }
Martin Reinecke's avatar
Martin Reinecke committed
670
      }
Martin Reinecke's avatar
Martin Reinecke committed
671
672
      return res;
      }
Martin Reinecke's avatar
Martin Reinecke committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
    pyarr_c<T> apply_taper(const pyarr_c<T> &img, bool divide) const
      {
      checkArray(img, "img", {nx_dirty, ny_dirty});
      auto pin = img.data();
      auto res = makeArray<T>({nx_dirty, ny_dirty});
      auto pout = res.mutable_data();
      {
      py::gil_scoped_release release;
      if (divide)
        for (size_t i=0; i<nx_dirty; ++i)
          for (size_t j=0; j<ny_dirty; ++j)
            pout[ny_dirty*i + j] = pin[ny_dirty*i + j]/(cfu[i]*cfv[j]);
      else
        for (size_t i=0; i<nx_dirty; ++i)
          for (size_t j=0; j<ny_dirty; ++j)
            pout[ny_dirty*i + j] = pin[ny_dirty*i + j]*cfu[i]*cfv[j];
      }
      return res;
      }
692
693
    pyarr_c<complex<T>> grid2dirty_c(const pyarr_c<complex<T>> &grid) const
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
694
695
      checkArray(grid, "grid", {nu, nv});
      auto tmp = makeArray<complex<T>>({nu, nv});
696
697
698
      auto ptmp = tmp.mutable_data();
      pocketfft::c2c({nu,nv},{grid.strides(0),grid.strides(1)},
        {tmp.strides(0), tmp.strides(1)}, {0,1}, pocketfft::BACKWARD,
699
        grid.data(), tmp.mutable_data(), T(1), nthreads);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
700
      auto res = makeArray<complex<T>>({nx_dirty, ny_dirty});
701
      auto pout = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
702
703
      {
      py::gil_scoped_release release;
704
705
706
707
708
709
710
711
712
      for (size_t i=0; i<nx_dirty; ++i)
        for (size_t j=0; j<ny_dirty; ++j)
          {
          size_t i2 = nu-nx_dirty/2+i;
          if (i2>=nu) i2-=nu;
          size_t j2 = nv-ny_dirty/2+j;
          if (j2>=nv) j2-=nv;
          pout[ny_dirty*i + j] = ptmp[nv*i2+j2]*cfu[i]*cfv[j];
          }
Martin Reinecke's avatar
Martin Reinecke committed
713
      }
714
715
      return res;
      }
716

Martin Reinecke's avatar
Martin Reinecke committed
717
    pyarr_c<T> dirty2grid(const pyarr_c<T> &dirty) const
Martin Reinecke's avatar
updates    
Martin Reinecke committed
718
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
719
      checkArray(dirty, "dirty", {nx_dirty, ny_dirty});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
720
      auto pdirty = dirty.data();
Martin Reinecke's avatar
merge    
Martin Reinecke committed
721
      auto tmp = makeArray<T>({nu, nv});
Martin Reinecke's avatar
updates    
Martin Reinecke committed
722
      auto ptmp = tmp.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
723
724
      {
      py::gil_scoped_release release;
Martin Reinecke's avatar
updates    
Martin Reinecke committed
725
726
727
728
729
730
731
732
733
734
735
      for (size_t i=0; i<nu*nv; ++i)
        ptmp[i] = 0.;
      for (size_t i=0; i<nx_dirty; ++i)
        for (size_t j=0; j<ny_dirty; ++j)
          {
          size_t i2 = nu-nx_dirty/2+i;
          if (i2>=nu) i2-=nu;
          size_t j2 = nv-ny_dirty/2+j;
          if (j2>=nv) j2-=nv;
          ptmp[nv*i2+j2] = pdirty[ny_dirty*i + j]*cfu[i]*cfv[j];
          }
Martin Reinecke's avatar
Martin Reinecke committed
736
      }
Martin Reinecke's avatar
Martin Reinecke committed
737
      hartley2_2D<T>(tmp, tmp);
Martin Reinecke's avatar
updates    
Martin Reinecke committed
738
739
      return tmp;
      }
740
741
    pyarr_c<complex<T>> dirty2grid_c(const pyarr_c<complex<T>> &dirty) const
      {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
742
      checkArray(dirty, "dirty", {nx_dirty, ny_dirty});
743
      auto pdirty = dirty.data();
Martin Reinecke's avatar
merge    
Martin Reinecke committed
744
      auto tmp = makeArray<complex<T>>({nu, nv});
745
      auto ptmp = tmp.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
746
747
748
      pocketfft::stride_t strides{tmp.strides(0),tmp.strides(1)};
      {
      py::gil_scoped_release release;
749
750
751
752
753
754
755
756
757
758
759
      for (size_t i=0; i<nu*nv; ++i)
        ptmp[i] = 0.;
      for (size_t i=0; i<nx_dirty; ++i)
        for (size_t j=0; j<ny_dirty; ++j)
          {
          size_t i2 = nu-nx_dirty/2+i;
          if (i2>=nu) i2-=nu;
          size_t j2 = nv-ny_dirty/2+j;
          if (j2>=nv) j2-=nv;
          ptmp[nv*i2+j2] = pdirty[ny_dirty*i + j]*cfu[i]*cfv[j];
          }
Martin Reinecke's avatar
Martin Reinecke committed
760
      pocketfft::c2c({nu,nv}, strides, strides, {0,1}, pocketfft::FORWARD,
761
        ptmp, ptmp, T(1), nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
762
      }
763
764
      return tmp;
      }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
765
766
    inline void getpix(T u_in, T v_in, T &u, T &v, int &iu0, int &iv0) const
      {
Martin Reinecke's avatar
Martin Reinecke committed
767
      u=fmodulo(u_in*psx, T(1))*nu,
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
768
769
      iu0 = int(u-w*0.5 + 1 + nu) - nu;
      if (iu0+w>nu+nsafe) iu0 = nu+nsafe-w;
Martin Reinecke's avatar
Martin Reinecke committed
770
      v=fmodulo(v_in*psy, T(1))*nv;
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
771
772
773
      iv0 = int(v-w*0.5 + 1 + nv) - nv;
      if (iv0+w>nv+nsafe) iv0 = nv+nsafe-w;
      }
Martin Reinecke's avatar
test1    
Martin Reinecke committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    pyarr_c<complex<T>> apply_wscreen(const pyarr_c<complex<T>> &dirty_, double w, bool adjoint) const
      {
      checkArray(dirty_, "dirty", {nx_dirty, ny_dirty});
      auto dirty = dirty_.data();
      auto res_ = makeArray<complex<T>>({nx_dirty, ny_dirty});
      auto res = res_.mutable_data();
      double x0 = -0.5*nx_dirty*psx,
             y0 = -0.5*ny_dirty*psy;
      {
      py::gil_scoped_release release;
#pragma omp parallel num_threads(nthreads)
{
#pragma omp for schedule(static)
      for (size_t i=0; i<=nx_dirty/2; ++i)
        {
        double fx = x0+i*psx;
        fx *= fx;
        for (size_t j=0; j<=ny_dirty/2; ++j)
          {
          double fy = y0+j*psy;
          auto ws = wscreen(fx, fy*fy, w, adjoint);
Martin Reinecke's avatar
Martin Reinecke committed
795
796
          res[ny_dirty*i+j] = dirty[ny_dirty*i+j]*ws; // lower left
          size_t i2 = nx_dirty-i, j2 = ny_dirty-j;
Martin Reinecke's avatar
Martin Reinecke committed
797
798
          if ((i>0)&&(i<i2))
            {
Martin Reinecke's avatar
Martin Reinecke committed
799
            res[ny_dirty*i2+j] = dirty[ny_dirty*i2+j]*ws; // lower right
Martin Reinecke's avatar
Martin Reinecke committed
800
            if ((j>0)&&(j<j2))
Martin Reinecke's avatar
Martin Reinecke committed
801
              res[ny_dirty*i2+j2] = dirty[ny_dirty*i2+j2]*ws; // upper right
Martin Reinecke's avatar
Martin Reinecke committed
802
803
            }
          if ((j>0)&&(j<j2))
Martin Reinecke's avatar
Martin Reinecke committed
804
            res[ny_dirty*i+j2] = dirty[ny_dirty*i+j2]*ws; // upper left
Martin Reinecke's avatar
test1    
Martin Reinecke committed
805
806
807
808
809
810
          }
        }
}
      }
    return res_;
    }
Martin Reinecke's avatar
Martin Reinecke committed
811
812
  };

813
template<typename T, typename T2=complex<T>> class Helper
Martin Reinecke's avatar
import  
Martin Reinecke committed
814
  {
Martin Reinecke's avatar
Martin Reinecke committed
815
  private:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
816
    const GridderConfig<T> &gconf;
Martin Reinecke's avatar
Martin Reinecke committed
817
818
    int nu, nv, nsafe, w;
    T beta;
819
820
    const T2 *grid_r;
    T2 *grid_w;
821
    int su, sv;
Martin Reinecke's avatar
Martin Reinecke committed
822
823
824
    int iu0, iv0; // start index of the current visibility
    int bu0, bv0; // start index of the current buffer

825
    vector<T2> rbuf, wbuf;
Martin Reinecke's avatar
import  
Martin Reinecke committed
826

Martin Reinecke's avatar
Martin Reinecke committed
827
    void dump() const
Martin Reinecke's avatar
import  
Martin Reinecke committed
828
      {
Martin Reinecke's avatar
Martin Reinecke committed
829
      if (bu0<-nsafe) return; // nothing written into buffer yet
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
830

Martin Reinecke's avatar
merge    
Martin Reinecke committed
831
#pragma omp critical (gridder_writing_to_grid)
Martin Reinecke's avatar
import  
Martin Reinecke committed
832
{
Martin Reinecke's avatar
Martin Reinecke committed
833
834
835
      int idxu = (bu0+nu)%nu;
      int idxv0 = (bv0+nv)%nv;
      for (int iu=0; iu<su; ++iu)
Martin Reinecke's avatar
import  
Martin Reinecke committed
836
837
        {
        int idxv = idxv0;
Martin Reinecke's avatar
Martin Reinecke committed
838
        for (int iv=0; iv<sv; ++iv)
Martin Reinecke's avatar
import  
Martin Reinecke committed
839
          {
840
          grid_w[idxu*nv + idxv] += wbuf[iu*sv + iv];
Martin Reinecke's avatar
import  
Martin Reinecke committed
841
842
843
844
845
846
847
848
849
          if (++idxv>=nv) idxv=0;
          }
        if (++idxu>=nu) idxu=0;
        }
}
      }

    void load()
      {
Martin Reinecke's avatar
Martin Reinecke committed
850
851
852
      int idxu = (bu0+nu)%nu;
      int idxv0 = (bv0+nv)%nv;
      for (int iu=0; iu<su; ++iu)
Martin Reinecke's avatar
import  
Martin Reinecke committed
853
854
        {
        int idxv = idxv0;
Martin Reinecke's avatar
Martin Reinecke committed
855
        for (int iv=0; iv<sv; ++iv)
Martin Reinecke's avatar
import  
Martin Reinecke committed
856
          {
857
          rbuf[iu*sv + iv] = grid_r[idxu*nv + idxv];
Martin Reinecke's avatar
import  
Martin Reinecke committed
858
859
860
861
862
863
864
          if (++idxv>=nv) idxv=0;
          }
        if (++idxu>=nu) idxu=0;
        }
      }

  public:
865
866
    const T2 *p0r;
    T2 *p0w;
Martin Reinecke's avatar
Martin Reinecke committed
867
    vector<T> kernel;
Martin Reinecke's avatar
import  
Martin Reinecke committed
868

869
    Helper(const GridderConfig<T> &gconf_, const T2 *grid_r_, T2 *grid_w_)
870
871
      : gconf(gconf_), nu(gconf.Nu()), nv(gconf.Nv()), nsafe(gconf.Nsafe()),
        w(gconf.W()), beta(gconf.Beta()), grid_r(grid_r_), grid_w(grid_w_),
Martin Reinecke's avatar
Martin Reinecke committed
872
        su(2*nsafe+(1<<logsquare)), sv(2*nsafe+(1<<logsquare)),
873
874
875
876
        bu0(-1000000), bv0(-1000000),
        rbuf(su*sv*(grid_r!=nullptr),T(0)),
        wbuf(su*sv*(grid_w!=nullptr),T(0)),
        kernel(2*w)
Martin Reinecke's avatar
Martin Reinecke committed
877
      {}
878
879
880
    ~Helper() { if (grid_w) dump(); }

    int lineJump() const { return sv; }
Martin Reinecke's avatar
Martin Reinecke committed
881
882

    void prep(T u_in, T v_in)
Martin Reinecke's avatar
import  
Martin Reinecke committed
883
      {
Martin Reinecke's avatar
Martin Reinecke committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
      T u, v;
      gconf.getpix(u_in, v_in, u, v, iu0, iv0);
      T xw=T(2)/w;
      auto x0 = xw*(iu0-u);
      auto y0 = xw*(iv0-v);
      for (int i=0; i<w; ++i)
        {
        auto x = x0+i*xw;
        kernel[i  ] = beta*sqrt(T(1)-x*x);
        auto y = y0+i*xw;
        kernel[i+w] = beta*sqrt(T(1)-y*y);
        }
      for (auto &k : kernel)
        k = exp(k);

      if ((iu0<bu0) || (iv0<bv0) || (iu0+w>bu0+su) || (iv0+w>bv0+sv))
Martin Reinecke's avatar
import  
Martin Reinecke committed
900
        {
901
        if (grid_w) { dump(); fill(wbuf.begin(), wbuf.end(), T(0)); }
Martin Reinecke's avatar
Martin Reinecke committed
902
903
        bu0=((((iu0+nsafe)>>logsquare)<<logsquare))-nsafe;
        bv0=((((iv0+nsafe)>>logsquare)<<logsquare))-nsafe;
904
        if (grid_r) load();
Martin Reinecke's avatar
import  
Martin Reinecke committed
905
        }
906
907
      p0r = rbuf.data() + sv*(iu0-bu0) + iv0-bv0;
      p0w = wbuf.data() + sv*(iu0-bu0) + iv0-bv0;
Martin Reinecke's avatar
import  
Martin Reinecke committed
908
909
910
      }
  };

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
constexpr auto vis2grid_c_DS = R"""(
Grids visibilities onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
vis: np.array((nvis,), dtype=np.complex)
    The visibility data for the index array
grid_in: np.array((nu,nv), dtype=np.complex128), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
927
928
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
929
930
931
932
933
934

Returns
=======
np.array((nu,nv), dtype=np.complex128):
    the gridded visibilities
)""";
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
935
936
template<typename T> pyarr_c<complex<T>> vis2grid_c(
  const Baselines<T> &baselines, const GridderConfig<T> &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
937
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &vis_,
Martin Reinecke's avatar
Martin Reinecke committed
938
  py::object &grid_in, const py::object &wgt_)
939
  {
Martin Reinecke's avatar
merge    
Martin Reinecke committed
940
941
942
  checkArray(vis_, "vis", {0});
  size_t nvis = size_t(vis_.shape(0));
  checkArray(idx_, "idx", {nvis});
943
944
  auto vis=vis_.template unchecked<1>();
  auto idx = idx_.template unchecked<1>();
Martin Reinecke's avatar
Martin Reinecke committed
945
946
947
  pyarr<T> wgt2 = providePotentialArray<T>(wgt_, {nvis});
  bool have_wgt = wgt2.size()>0;
  auto wgt = wgt2.template unchecked<1>();
948

949
  size_t nu=gconf.Nu(), nv=gconf.Nv();
Martin Reinecke's avatar
Martin Reinecke committed
950
  auto res = provideCArray<complex<T>>(grid_in, {nu, nv});
951
  auto grid = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
952
953
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
954
955
  T beta = gconf.Beta();
  size_t w = gconf.W();
956

957
#pragma omp parallel num_threads(nthreads)
958
{
959
  Helper<T> hlp(gconf, nullptr, grid);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
960
  T emb = exp(-2*beta);
961
  int jump = hlp.lineJump();
962
  const T * RESTRICT ku = hlp.kernel.data();
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
963
  const T * RESTRICT kv = hlp.kernel.data()+w;
964
965
966
967
968

  // Loop over sampling points
#pragma omp for schedule(guided,100)
  for (size_t ipart=0; ipart<nvis; ++ipart)
    {
969
    UVW<T> coord = baselines.effectiveCoord(idx(ipart));
Martin Reinecke's avatar
Martin Reinecke committed
970
    hlp.prep(coord.u, coord.v);
971
    auto * RESTRICT ptr = hlp.p0w;
972
    auto v(vis(ipart)*emb);
Martin Reinecke's avatar
Martin Reinecke committed
973
974
    if (have_wgt)
      v*=wgt(ipart);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
975
    for (size_t cu=0; cu<w; ++cu)
976
977
      {
      complex<T> tmp(v*ku[cu]);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
978
      for (size_t cv=0; cv<w; ++cv)
979
        ptr[cv] += tmp*kv[cv];
980
      ptr+=jump;
981
982
983
      }
    }
} // end of parallel region
Martin Reinecke's avatar
Martin Reinecke committed
984
  }
985
986
987
  return res;
  }

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
constexpr auto vis2grid_DS = R"""(
Grids visibilities onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
vis: np.array((nvis,), dtype=np.complex)
    The visibility data for the index array
Martin Reinecke's avatar
Martin Reinecke committed
1002
1003
grid_in: np.array((nu,nv), dtype=np.float64), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
1004
1005
wgt: np.array((nvis,), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
1006
1007
1008
1009
1010
1011

Returns
=======
np.array((nu,nv), dtype=np.float64):
    the gridded visibilities (made real by making use of Hermitian symmetry)
)""";
Martin Reinecke's avatar
Martin Reinecke committed
1012
template<typename T> pyarr_c<T> vis2grid(const Baselines<T> &baselines,
1013
  const GridderConfig<T> &gconf, const pyarr<uint32_t> &idx_,
Martin Reinecke's avatar
Martin Reinecke committed
1014
1015
  const pyarr<complex<T>> &vis_, py::object &grid_in, const py::object &wgt_)
  { return complex2hartley(vis2grid_c(baselines, gconf, idx_, vis_, None, wgt_), grid_in); }
Martin Reinecke's avatar
updates    
Martin Reinecke committed
1016

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
constexpr auto ms2grid_c_DS = R"""(
Grids measurement set data onto a UV grid

Parameters
==========
baselines: Baselines
    the Baselines object
gconf: GridderConf
    the GridderConf object to be used
    (used to optimize the ordering of the indices)
idx: np.array((nvis,), dtype=np.uint32)
    the indices for the entries to be gridded
ms: np.array((nrows, nchannels), dtype=np.complex128)
    the measurement set.
grid_in: np.array((nu,nv), dtype=np.complex128), optional
    If present, the result is added to this array.
Martin Reinecke's avatar
Martin Reinecke committed
1033
1034
wgt: np.array((nrows, nchannels), dtype=np.float64), optional
    If present, visibilities are multiplied by the corresponding entries.
1035
1036
1037
1038
1039
1040

Returns
=======
np.array((nu,nv), dtype=np.complex128):
    the gridded visibilities
)""";
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
1041
1042
template<typename T> pyarr_c<complex<T>> ms2grid_c(
  const Baselines<T> &baselines, const GridderConfig<T> &gconf,
Martin Reinecke's avatar
Martin Reinecke committed
1043
  const pyarr<uint32_t> &idx_, const pyarr<complex<T>> &ms_,
Martin Reinecke's avatar
Martin Reinecke committed
1044
  py::object &grid_in, const py::object &wgt_)
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1045
1046
1047
1048
1049
1050
  {
  auto nrows = baselines.Nrows();
  auto nchan = baselines.Nchannels();
  checkArray(ms_, "ms", {nrows, nchan});
  checkArray(idx_, "idx", {0});
  size_t nvis = size_t(idx_.shape(0));
1051
1052
  auto ms = ms_.template unchecked<2>();
  auto idx = idx_.template unchecked<1>();
Martin Reinecke's avatar
Martin Reinecke committed
1053
1054
1055
  auto wgt2 = providePotentialArray<T>(wgt_, {nrows, nchan});
  bool have_wgt = wgt2.size()>0;
  auto wgt = wgt2.template unchecked<2>();
Simon Perkins's avatar
Simon Perkins committed
1056

Martin Reinecke's avatar
merge    
Martin Reinecke committed
1057
  size_t nu=gconf.Nu(), nv=gconf.Nv();
Martin Reinecke's avatar
Martin Reinecke committed
1058
  auto res = provideCArray<complex<T>>(grid_in, {nu, nv});
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1059
  auto grid = res.mutable_data();
Martin Reinecke's avatar
Martin Reinecke committed
1060
1061
  {
  py::gil_scoped_release release;
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1062
1063
1064
  T beta = gconf.Beta();
  size_t w = gconf.W();

1065
#pragma omp parallel num_threads(nthreads)
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1066
{
1067
  Helper<T> hlp(gconf, nullptr, grid);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1068
  T emb = exp(-2*beta);
1069
  int jump = hlp.lineJump();
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1070
1071
1072
1073
1074
1075
1076
  const T * RESTRICT ku = hlp.kernel.data();
  const T * RESTRICT kv = hlp.kernel.data()+w;

  // Loop over sampling points
#pragma omp for schedule(guided,100)
  for (size_t ipart=0; ipart<nvis; ++ipart)
    {
1077
1078
1079
1080
    auto tidx = idx(ipart);
    auto row = tidx/nchan;
    auto chan = tidx-row*nchan;
    UVW<T> coord = baselines.effectiveCoord(tidx);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1081
    hlp.prep(coord.u, coord.v);
1082
    auto * RESTRICT ptr = hlp.p0w;
1083
    auto v(ms(row,chan)*emb);
Martin Reinecke's avatar
Martin Reinecke committed
1084
1085
    if (have_wgt)
      v*=wgt(row, chan);
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1086
1087
1088
1089
1090
    for (size_t cu=0; cu<w; ++cu)
      {
      complex<T> tmp(v*ku[cu]);
      for (size_t cv=0; cv<w; ++cv)
        ptr[cv] += tmp*kv[cv];
1091
      ptr+=jump;
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1092
1093
1094
      }
    }
} // end of parallel region
Martin Reinecke's avatar
Martin Reinecke committed
1095
  }
Martin Reinecke's avatar
merge    
Martin Reinecke committed
1096
1097
1098
1099
  return res;
  }

template<typename T> pyarr_c<T> ms2grid(const Baselines<T> &baselines,
1100
  const GridderConfig<T> &gconf, const pyarr<uint32_t> &idx_,