numpy_do.py 3.85 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

18
# Data object module that uses simple numpy ndarrays.
19 20

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
21
from numpy import absolute, clip, cos, cosh, empty, empty_like, exp, full, log
22
from numpy import ndarray as data_object
Philipp Arras's avatar
Philipp Arras committed
23 24
from numpy import ones, sign, sin, sinc, sinh, sqrt, tan, tanh, vdot, zeros

Martin Reinecke's avatar
Martin Reinecke committed
25 26
from .random import Random

Martin Reinecke's avatar
Martin Reinecke committed
27 28 29 30 31 32
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
33
           "redistribute", "default_distaxis", "is_numpy", "absmax", "norm",
34
           "lock", "locked", "uniform_full", "to_global_data_rw",
Martin Reinecke's avatar
Martin Reinecke committed
35
           "ensure_not_distributed", "ensure_default_distributed",
Martin Reinecke's avatar
Martin Reinecke committed
36
           "clip", "sin", "cos", "tan", "sinh",
37
           "cosh", "absolute", "sign", "sinc"]
Martin Reinecke's avatar
Martin Reinecke committed
38

Martin Reinecke's avatar
Martin Reinecke committed
39 40 41 42
ntask = 1
rank = 0
master = True

43

Martin Reinecke's avatar
Martin Reinecke committed
44 45 46 47
def is_numpy():
    return True


48 49 50 51 52 53 54 55 56 57 58 59 60 61
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    res = np.array(object, dtype=dtype, copy=copy)
    if set_locked:
        lock(res)
    return res
Martin Reinecke's avatar
Martin Reinecke committed
62 63 64 65 66


def from_random(random_type, shape, dtype=np.float64, **kwargs):
    generator_function = getattr(Random, random_type)
    return generator_function(dtype=dtype, shape=shape, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68

Martin Reinecke's avatar
Martin Reinecke committed
69 70 71 72
def local_data(arr):
    return arr


73 74 75 76
def ibegin_from_shape(glob_shape, distaxis=-1):
    return (0,)*len(glob_shape)


Martin Reinecke's avatar
Martin Reinecke committed
77 78 79 80 81 82 83 84
def ibegin(arr):
    return (0,)*arr.ndim


def np_allreduce_sum(arr):
    return arr


85 86 87 88
def np_allreduce_min(arr):
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
89 90 91 92
def np_allreduce_max(arr):
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
93
def distaxis(arr):
Martin Reinecke's avatar
Martin Reinecke committed
94
    return -1
Martin Reinecke's avatar
Martin Reinecke committed
95 96


Martin Reinecke's avatar
Martin Reinecke committed
97
def from_local_data(shape, arr, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
98
    if tuple(shape) != arr.shape:
Martin Reinecke's avatar
Martin Reinecke committed
99
        raise ValueError
100 101
    if arr.dtype.kind not in "fciub":
        raise TypeError
Martin Reinecke's avatar
Martin Reinecke committed
102 103 104
    return arr


105
def from_global_data(arr, sum_up=False, distaxis=-1):
106 107
    if arr.dtype.kind not in "fciub":
        raise TypeError
Martin Reinecke's avatar
Martin Reinecke committed
108 109 110
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
111
def to_global_data(arr):
Martin Reinecke's avatar
Martin Reinecke committed
112 113 114
    return arr


115 116 117 118
def to_global_data_rw(arr):
    return arr.copy()


Martin Reinecke's avatar
Martin Reinecke committed
119
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
120 121 122
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
123
def default_distaxis():
Martin Reinecke's avatar
Martin Reinecke committed
124 125 126
    return -1


127
def local_shape(glob_shape, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
128
    return glob_shape
129 130 131 132 133 134 135 136


def lock(arr):
    arr.flags.writeable = False


def locked(arr):
    return not arr.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
137 138 139 140


def uniform_full(shape, fill_value, dtype=None, distaxis=-1):
    return np.broadcast_to(fill_value, shape)
141 142 143 144 145 146 147 148


def ensure_not_distributed(arr, axes):
    return arr, arr


def ensure_default_distributed(arr):
    return arr
149 150 151


def absmax(arr):
152
    return np.linalg.norm(arr.reshape(-1), ord=np.inf)
153 154 155


def norm(arr, ord=2):
156
    return np.linalg.norm(arr.reshape(-1), ord=ord)