energy_operators.py 12 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18 19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
23
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
24
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
25 26
from ..sugar import makeDomain, makeOp
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
Martin Reinecke's avatar
Martin Reinecke committed
28
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
29
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
30
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
31 32 33


class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
34
    """Operator which has a scalar domain as target domain.
35

Martin Reinecke's avatar
Martin Reinecke committed
36
    It is intended as an objective function for field inference.
37

Philipp Arras's avatar
Philipp Arras committed
38 39 40
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
41
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
42
       divergence.
43
    """
Martin Reinecke's avatar
Martin Reinecke committed
44 45 46 47
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
48
    """Computes the L2-norm of the output of an operator.
49

Philipp Arras's avatar
Philipp Arras committed
50 51 52
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
53
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
54
    """
Philipp Arras's avatar
Philipp Arras committed
55

Martin Reinecke's avatar
Martin Reinecke committed
56 57 58 59
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
60
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
61
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
62
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
63
            jac = VdotOperator(2*x.val)(x.jac)
64
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
65
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
66 67 68


class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
69
    """Computes the L2-norm of a Field or MultiField with respect to a
70
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
71 72 73

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
74 75 76

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
77
    endo : EndomorphicOperator
78
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
79
    """
Philipp Arras's avatar
Philipp Arras committed
80 81

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
82
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
83
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
84
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
85 86
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
87 88

    def apply(self, x):
89
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
90
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
91 92
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
93
            val = Field.scalar(0.5*x.val.vdot(t1))
94
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
95
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
96 97 98


class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
99
    """Computes a negative-log Gaussian.
100

Philipp Arras's avatar
Philipp Arras committed
101
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
102

Philipp Arras's avatar
Philipp Arras committed
103 104
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
Martin Reinecke committed
105

Philipp Arras's avatar
Philipp Arras committed
106 107
    an information energy for a Gaussian distribution with mean m and
    covariance D.
108

Philipp Arras's avatar
Philipp Arras committed
109 110 111 112 113 114
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
    covariance : LinearOperator
        Covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Philipp Arras committed
115
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
116 117 118 119 120 121
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
122
    """
Martin Reinecke's avatar
Martin Reinecke committed
123

Martin Reinecke's avatar
Martin Reinecke committed
124
    def __init__(self, mean=None, covariance=None, domain=None):
Martin Reinecke's avatar
Martin Reinecke committed
125 126
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
127 128 129 130
        if covariance is not None and not isinstance(covariance,
                                                     LinearOperator):
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
131 132 133 134 135 136 137 138 139 140
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
141 142 143 144
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
145 146 147
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
Martin Reinecke committed
148
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
149
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
150
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
151
        else:
Philipp Arras's avatar
Philipp Arras committed
152
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
153 154 155
                raise ValueError("domain mismatch")

    def apply(self, x):
156
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
157
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Philipp Arras committed
158
        res = self._op(residual).real
159
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
160 161 162 163 164 165
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
166 167
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
168

Philipp Arras's avatar
Philipp Arras committed
169
    Represents up to an f-independent term :math:`log(d!)`:
170

Philipp Arras's avatar
Philipp Arras committed
171 172
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
173

Philipp Arras's avatar
Philipp Arras committed
174
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
175
    the counts.
Philipp Arras's avatar
Philipp Arras committed
176 177 178 179 180 181

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
182
    """
Philipp Arras's avatar
Philipp Arras committed
183

184
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
185 186 187 188
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
        if np.any(d.local_data < 0):
            raise ValueError
189 190
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
191 192

    def apply(self, x):
193
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
194 195
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
196
            return Field.scalar(res)
197 198
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
199 200 201
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

202

203
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
204
    """Computes the negative log-likelihood of the inverse gamma distribution.
205 206 207

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
208 209 210 211 212 213 214
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
215 216 217 218 219 220 221

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
222
    """
Philipp Arras's avatar
Philipp Arras committed
223

224 225
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
226
            raise TypeError
227 228
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
Martin Reinecke committed
229 230
            alpha = Field.from_local_data(
                beta.domain, np.full(beta.local_data.shape, alpha))
231 232 233 234
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
        self._domain = DomainTuple.make(beta.domain)
235 236

    def apply(self, x):
237
        self._check_input(x)
238
        res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta)
239 240
        if not isinstance(x, Linearization):
            return Field.scalar(res)
241 242
        if not x.want_metric:
            return res
243
        metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2)))
244 245 246
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
247
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
248
    """Computes likelihood energy of expected event frequency constrained by
249 250
    event data.

Philipp Arras's avatar
Philipp Arras committed
251 252 253 254 255 256 257
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

258 259
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
260
    d : Field
Philipp Arras's avatar
Philipp Arras committed
261
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
262
    """
Philipp Arras's avatar
Philipp Arras committed
263

264
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
265 266 267 268
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
        if not np.all(np.logical_or(d.local_data == 0, d.local_data == 1)):
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
269
        self._d = d
270
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
271 272

    def apply(self, x):
273
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
274
        v = -(x.log().vdot(self._d) + (1. - x).log().vdot(1. - self._d))
Martin Reinecke's avatar
Martin Reinecke committed
275
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
276
            return Field.scalar(v)
277 278
        if not x.want_metric:
            return v
Philipp Arras's avatar
Philipp Arras committed
279
        met = makeOp(1./(x.val*(1. - x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
280 281 282 283
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


284
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
285 286
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
287

Philipp Arras's avatar
Philipp Arras committed
288
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
289

Philipp Arras's avatar
Philipp Arras committed
290 291
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
292

Martin Reinecke's avatar
Martin Reinecke committed
293
    Other field priors can be represented via transformations of a white
294 295
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
296
    By implementing prior information this way, the field prior is represented
297 298 299
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
300 301 302 303 304 305 306 307
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
308
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
309 310 311 312 313 314
        to use to draw Gaussian samples.

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
315
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
316
    """
Philipp Arras's avatar
Philipp Arras committed
317

Martin Reinecke's avatar
Martin Reinecke committed
318 319 320 321
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
322
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
323 324

    def apply(self, x):
325
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
326 327 328
        if (self._ic_samp is None or not isinstance(x, Linearization)
                or not x.want_metric):
            return self._lh(x) + self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
329
        else:
330
            lhx, prx = self._lh(x), self._prior(x)
331 332
            mtr = SamplingEnabler(lhx.metric, prx.metric,
                                  self._ic_samp)
Philipp Arras's avatar
Philipp Arras committed
333
            return (lhx + prx).add_metric(mtr)
Martin Reinecke's avatar
Martin Reinecke committed
334

Philipp Arras's avatar
Philipp Arras committed
335 336 337
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
        subs += '\nPrior: Quadratic{}'.format(self._lh.domain.keys())
Martin Reinecke's avatar
Martin Reinecke committed
338
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
339

Martin Reinecke's avatar
Martin Reinecke committed
340

Martin Reinecke's avatar
Martin Reinecke committed
341
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
342
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
343

344 345 346
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
347
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
348
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
349 350
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
351

Philipp Arras's avatar
Philipp Arras committed
352 353 354 355 356
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Torsten Ensslin committed
357

Philipp Arras's avatar
Philipp Arras committed
358 359 360
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
361
    """
Martin Reinecke's avatar
Martin Reinecke committed
362 363 364

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
365
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
366 367 368
        self._res_samples = tuple(res_samples)

    def apply(self, x):
369
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
370 371
        mymap = map(lambda v: self._h(x + v), self._res_samples)
        return utilities.my_sum(mymap)*(1./len(self._res_samples))