## NIFTY (Numerical Information Field Theory) has been developed at the ## Max-Planck-Institute for Astrophysics. ## ## Copyright (C) 2013 Max-Planck-Society ## ## Author: Marco Selig ## Project homepage: ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ## See the GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . """ .. __ ____ __ .. /__/ / _/ / /_ .. __ ___ __ / /_ / _/ __ __ .. / _ | / / / _/ / / / / / / .. / / / / / / / / / /_ / /_/ / .. /__/ /__/ /__/ /__/ \___/ \___ / core .. /______/ .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/ NIFTY [#]_, "Numerical Information Field Theory", is a versatile library designed to enable the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTY offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTY permits its user to rapidly prototype algorithms in 1D and then apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTY operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those. References ---------- .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory -- a versatile Python library for signal inference", `A&A, vol. 554, id. A26 `_, 2013; `arXiv:1301.4499 `_ Class & Feature Overview ------------------------ The NIFTY library features three main classes: **spaces** that represent certain grids, **fields** that are defined on spaces, and **operators** that apply to fields. .. Overview of all (core) classes: .. .. - switch .. - notification .. - _about .. - random .. - space .. - point_space .. - rg_space .. - lm_space .. - gl_space .. - hp_space .. - nested_space .. - field .. - operator .. - diagonal_operator .. - power_operator .. - projection_operator .. - vecvec_operator .. - response_operator .. - probing .. - trace_probing .. - diagonal_probing Overview of the main classes and functions: .. automodule:: nifty - :py:class:`space` - :py:class:`point_space` - :py:class:`rg_space` - :py:class:`lm_space` - :py:class:`gl_space` - :py:class:`hp_space` - :py:class:`nested_space` - :py:class:`field` - :py:class:`operator` - :py:class:`diagonal_operator` - :py:class:`power_operator` - :py:class:`projection_operator` - :py:class:`vecvec_operator` - :py:class:`response_operator` .. currentmodule:: nifty.nifty_tools - :py:class:`invertible_operator` - :py:class:`propagator_operator` .. currentmodule:: nifty.nifty_explicit - :py:class:`explicit_operator` .. automodule:: nifty - :py:class:`probing` - :py:class:`trace_probing` - :py:class:`diagonal_probing` .. currentmodule:: nifty.nifty_explicit - :py:class:`explicit_probing` .. currentmodule:: nifty.nifty_tools - :py:class:`conjugate_gradient` - :py:class:`steepest_descent` .. currentmodule:: nifty.nifty_explicit - :py:func:`explicify` .. currentmodule:: nifty.nifty_power - :py:func:`weight_power`, :py:func:`smooth_power`, :py:func:`infer_power`, :py:func:`interpolate_power` """ from __future__ import division import numpy as np import pylab as pl from nifty_paradict import space_paradict,\ point_space_paradict,\ nested_space_paradict from nifty_about import about from nifty_random import random from nifty.nifty_mpi_data import distributed_data_object pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679 ##============================================================================= class space(object): """ .. _______ ______ ____ __ _______ _______ .. / _____/ / _ | / _ / / ____/ / __ / .. /_____ / / /_/ / / /_/ / / /____ / /____/ .. /_______/ / ____/ \______| \______/ \______/ class .. /__/ NIFTY base class for spaces and their discretizations. The base NIFTY space class is an abstract class from which other specific space subclasses, including those preimplemented in NIFTY (e.g. the regular grid class) must be derived. Parameters ---------- para : {single object, list of objects}, *optional* This is a freeform list of parameters that derivatives of the space class can use (default: 0). datatype : numpy.dtype, *optional* Data type of the field values for a field defined on this space (default: numpy.float64). See Also -------- point_space : A class for unstructured lists of numbers. rg_space : A class for regular cartesian grids in arbitrary dimensions. hp_space : A class for the HEALPix discretization of the sphere [#]_. gl_space : A class for the Gauss-Legendre discretization of the sphere [#]_. lm_space : A class for spherical harmonic components. nested_space : A class for product spaces. References ---------- .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere", *ApJ* 622..759G. .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical harmonic transforms revisited"; `arXiv:1303.4945 `_ Attributes ---------- para : {single object, list of objects} This is a freeform list of parameters that derivatives of the space class can use. datatype : numpy.dtype Data type of the field values for a field defined on this space. discrete : bool Whether the space is inherently discrete (true) or a discretization of a continuous space (false). vol : numpy.ndarray An array of pixel volumes, only one component if the pixels all have the same volume. """ def __init__(self, para=0, datatype=None): """ Sets the attributes for a space class instance. Parameters ---------- para : {single object, list of objects}, *optional* This is a freeform list of parameters that derivatives of the space class can use (default: 0). datatype : numpy.dtype, *optional* Data type of the field values for a field defined on this space (default: numpy.float64). Returns ------- None """ self.paradict = space_paradict(default=para) ## check data type if(datatype is None): datatype = np.float64 elif(datatype not in [np.int8,np.int16,np.int32,np.int64,np.float16,np.float32,np.float64,np.complex64,np.complex128]): about.warnings.cprint("WARNING: data type set to default.") datatype = np.float64 self.datatype = datatype self.discrete = True self.vol = np.real(np.array([1],dtype=self.datatype)) @property def para(self): return self.paradict['default'] @para.setter def para(self, x): self.paradict['default'] = x ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _freeze_config(self, dictionary): """ a helper function which forms a hashable identifying object from a dictionary which can be used as key of a dict """ return frozenset(dictionary.items()) def copy(self): return space(para = self.para, datatype = self.datatype) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def getitem(self, data, key): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'getitem'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def setitem(self, data, key): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'getitem'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def apply_scalar_function(self, x, function, inplace=False): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'apply_scalar_function'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def unary_operation(self, x, op=None): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'unary_operation'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def binary_operation(self, x, y, op=None): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'binary_operation'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_norm(self, x, q): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'norm'.")) def get_shape(self): raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'shape'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_dim(self,split=False): """ Computes the dimension of the space, i.e.\ the number of pixels. Parameters ---------- split : bool, *optional* Whether to return the dimension split up, i.e. the numbers of pixels in each direction, or not (default: False). Returns ------- dim : {int, numpy.ndarray} Dimension(s) of the space. """ raise NotImplementedError(about._errors.cstring( "ERROR: no generic instance method 'dim'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_dof(self): """ Computes the number of degrees of freedom of the space. Returns ------- dof : int Number of degrees of freedom of the space. """ raise NotImplementedError(about._errors.cstring( "ERROR: no generic instance method 'dof'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_power(self,spec,**kwargs): """ Provides a valid power spectrum array from a given object. Parameters ---------- spec : {scalar, list, numpy.ndarray, nifty.field, function} Fiducial power spectrum from which a valid power spectrum is to be calculated. Scalars are interpreted as constant power spectra. Returns ------- spec : numpy.ndarray Valid power spectrum. Other parameters ---------------- size : int, *optional* Number of bands the power spectrum shall have (default: None). kindex : numpy.ndarray, *optional* Scale of each band. codomain : nifty.space, *optional* A compatible codomain for power indexing (default: None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). """ raise NotImplementedError(about._errors.cstring( "ERROR: no generic instance method 'enforce_power'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def set_power_indices(self,**kwargs): """ Sets the (un)indexing objects for spectral indexing internally. Parameters ---------- log : bool Flag specifying if the binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer Number of used bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array} User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). Returns ------- None See Also -------- get_power_indices """ raise NotImplementedError(about._errors.cstring( "ERROR: no generic instance method 'set_power_indices'.")) def get_power_indices(self,**kwargs): """ Provides the (un)indexing objects for spectral indexing. Provides one-dimensional arrays containing the scales of the spectral bands and the numbers of modes per scale, and an array giving for each component of a field the corresponding index of a power spectrum as well as an Unindexing array. Parameters ---------- log : bool Flag specifying if the binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer Number of used bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array} User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). Returns ------- kindex : numpy.ndarray Scale of each spectral band. rho : numpy.ndarray Number of modes per scale represented in the discretization. pindex : numpy.ndarray Indexing array giving the power spectrum index for each represented mode. pundex : numpy.ndarray Unindexing array undoing power spectrum indexing. Notes ----- The ``kindex`` and ``rho`` are each one-dimensional arrays. The indexing array is of the same shape as a field living in this space and contains the indices of the associated bands. Indexing with the unindexing array undoes the indexing with the indexing array; i.e., ``power == power[pindex].flatten()[pundex]``. See Also -------- set_power_indices """ raise NotImplementedError(about._errors.cstring( "ERROR: no generic instance method 'get_power_indices'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def cast(self, x, verbose=False): """ Computes valid field values from a given object, trying to translate the given data into a valid form. Thereby it is as benevolent as possible. Parameters ---------- x : {float, numpy.ndarray, nifty.field} Object to be transformed into an array of valid field values. Returns ------- x : numpy.ndarray, distributed_data_object Array containing the field values, which are compatible to the space. Other parameters ---------------- verbose : bool, *optional* Whether the method should raise a warning if information is lost during casting (default: False). """ return self.enforce_values(x, extend=True) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_shape(self,x): """ Shapes an array of valid field values correctly, according to the specifications of the space instance. Parameters ---------- x : numpy.ndarray Array containing the field values to be put into shape. Returns ------- y : numpy.ndarray Correctly shaped array. """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_shape'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_values(self,x,extend=True): """ Computes valid field values from a given object, according to the constraints from the space instance. Parameters ---------- x : {float, numpy.ndarray, nifty.field} Object to be transformed into an array of valid field values. Returns ------- x : numpy.ndarray Array containing the valid field values. Other parameters ---------------- extend : bool, *optional* Whether a scalar is extented to a constant array or not (default: True). """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_values'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_random_values(self,**kwargs): """ Generates random field values according to the specifications given by the parameters. Returns ------- x : numpy.ndarray Valid field values. Other parameters ---------------- random : string, *optional* Specifies the probability distribution from which the random numbers are to be drawn. Supported distributions are: - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i} - "gau" (normal distribution with zero-mean and a given standard deviation or variance) - "syn" (synthesizes from a given power spectrum) - "uni" (uniform distribution over [vmin,vmax[) (default: None). dev : float, *optional* Standard deviation (default: 1). var : float, *optional* Variance, overriding `dev` if both are specified (default: 1). spec : {scalar, list, numpy.ndarray, nifty.field, function}, *optional* Power spectrum (default: 1). pindex : numpy.ndarray, *optional* Indexing array giving the power spectrum index of each band (default: None). kindex : numpy.ndarray, *optional* Scale of each band (default: None). codomain : nifty.space, *optional* A compatible codomain with power indices (default: None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). vmin : float, *optional* Lower limit for a uniform distribution (default: 0). vmax : float, *optional* Upper limit for a uniform distribution (default: 1). """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_random_values'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def check_codomain(self,codomain): """ Checks whether a given codomain is compatible to the space or not. Parameters ---------- codomain : nifty.space Space to be checked for compatibility. Returns ------- check : bool Whether or not the given codomain is compatible to the space. """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'check_codomain'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_codomain(self,**kwargs): """ Generates a compatible codomain to which transformations are reasonable, usually either the position basis or the basis of harmonic eigenmodes. Parameters ---------- coname : string, *optional* String specifying a desired codomain (default: None). cozerocenter : {bool, numpy.ndarray}, *optional* Whether or not the grid is zerocentered for each axis or not (default: None). conest : list, *optional* List of nested spaces of the codomain (default: None). coorder : list, *optional* Permutation of the list of nested spaces (default: None). Returns ------- codomain : nifty.space A compatible codomain. """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_codomain'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_meta_volume(self,total=False): """ Calculates the meta volumes. The meta volumes are the volumes associated with each component of a field, taking into account field components that are not explicitly included in the array of field values but are determined by symmetry conditions. Parameters ---------- total : bool, *optional* Whether to return the total meta volume of the space or the individual ones of each field component (default: False). Returns ------- mol : {numpy.ndarray, float} Meta volume of the field components or the complete space. """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_meta_volume'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_weight(self,x,power=1): """ Weights a given array of field values with the pixel volumes (not the meta volumes) to a given power. Parameters ---------- x : numpy.ndarray Array to be weighted. power : float, *optional* Power of the pixel volumes to be used (default: 1). Returns ------- y : numpy.ndarray Weighted array. """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_weight'.")) def get_weight(self, power=1): raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_weight'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_dot(self,x,y): """ Computes the discrete inner product of two given arrays of field values. Parameters ---------- x : numpy.ndarray First array y : numpy.ndarray Second array Returns ------- dot : scalar Inner product of the two arrays. """ raise NotImplementedError(about._errors.cstring(\ "ERROR: no generic instance method 'dot'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_transform(self,x,codomain=None,**kwargs): """ Computes the transform of a given array of field values. Parameters ---------- x : numpy.ndarray Array to be transformed. codomain : nifty.space, *optional* Target space to which the transformation shall map (default: self). Returns ------- Tx : numpy.ndarray Transformed array Other parameters ---------------- iter : int, *optional* Number of iterations performed in specific transformations. """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_transform'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_smooth(self,x,sigma=0,**kwargs): """ Smoothes an array of field values by convolution with a Gaussian kernel. Parameters ---------- x : numpy.ndarray Array of field values to be smoothed. sigma : float, *optional* Standard deviation of the Gaussian kernel, specified in units of length in position space (default: 0). Returns ------- Gx : numpy.ndarray Smoothed array. Other parameters ---------------- iter : int, *optional* Number of iterations (default: 0). """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_smooth'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_power(self,x,**kwargs): """ Computes the power of an array of field values. Parameters ---------- x : numpy.ndarray Array containing the field values of which the power is to be calculated. Returns ------- spec : numpy.ndarray Power contained in the input array. Other parameters ---------------- pindex : numpy.ndarray, *optional* Indexing array assigning the input array components to components of the power spectrum (default: None). kindex : numpy.ndarray, *optional* Scale corresponding to each band in the power spectrum (default: None). rho : numpy.ndarray, *optional* Number of degrees of freedom per band (default: None). codomain : nifty.space, *optional* A compatible codomain for power indexing (default: None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_power'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_plot(self,x,**kwargs): """ Creates a plot of field values according to the specifications given by the parameters. Parameters ---------- x : numpy.ndarray Array containing the field values. Returns ------- None Other parameters ---------------- title : string, *optional* Title of the plot (default: ""). vmin : float, *optional* Minimum value to be displayed (default: ``min(x)``). vmax : float, *optional* Maximum value to be displayed (default: ``max(x)``). power : bool, *optional* Whether to plot the power contained in the field or the field values themselves (default: False). unit : string, *optional* Unit of the field values (default: ""). norm : string, *optional* Scaling of the field values before plotting (default: None). cmap : matplotlib.colors.LinearSegmentedColormap, *optional* Color map to be used for two-dimensional plots (default: None). cbar : bool, *optional* Whether to show the color bar or not (default: True). other : {single object, tuple of objects}, *optional* Object or tuple of objects to be added, where objects can be scalars, arrays, or fields (default: None). legend : bool, *optional* Whether to show the legend or not (default: False). mono : bool, *optional* Whether to plot the monopole or not (default: True). save : string, *optional* Valid file name where the figure is to be stored, by default the figure is not saved (default: False). error : {float, numpy.ndarray, nifty.field}, *optional* Object indicating some confidence interval to be plotted (default: None). kindex : numpy.ndarray, *optional* Scale corresponding to each band in the power spectrum (default: None). codomain : nifty.space, *optional* A compatible codomain for power indexing (default: None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). iter : int, *optional* Number of iterations (default: 0). """ raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_plot'.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __repr__(self): return "" def __str__(self): return "nifty_core.space instance\n- para = "+str(self.para)+"\n- datatype = numpy."+str(np.result_type(self.datatype)) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __len__(self): return int(self.dim(split=False)) ## _identiftier returns an object which contains all information needed ## to uniquely idetnify a space. It returns a (immutable) tuple which therefore ## can be compored. def _identifier(self): return tuple(sorted(vars(self).items())) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _meta_vars(self): ## > captures all nonstandard properties mars = np.array([ii[1] for ii in vars(self).iteritems() if ii[0] not in ["para","datatype","discrete","vol","power_indices"]],dtype=np.object) if(np.size(mars)==0): return None else: return mars def __eq__(self, x): ## __eq__ : self == x if isinstance(x, type(self)): return self._identifier() == x._identifier() else: return False def __ne__(self, x): return not self.__eq__(x) def __lt__(self,x): ## __lt__ : self < x if(isinstance(x,space)): if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)): raise ValueError(about._errors.cstring("ERROR: incomparable spaces.")) elif(self.discrete==x.discrete): ## data types are ignored for ii in xrange(np.size(self.para)): if(self.para[ii]x.para[ii]): return False for ii in xrange(np.size(self.vol)): if(self.vol[ii]x.vol[ii]): return False s_mars = self._meta_vars() x_mars = x._meta_vars() for ii in xrange(np.size(s_mars)): if(np.all(s_mars[ii]x_mars[ii])): break return False def __le__(self,x): ## __le__ : self <= x if(isinstance(x,space)): if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)): raise ValueError(about._errors.cstring("ERROR: incomparable spaces.")) elif(self.discrete==x.discrete): ## data types are ignored for ii in xrange(np.size(self.para)): if(self.para[ii]x.para[ii]): return False for ii in xrange(np.size(self.vol)): if(self.vol[ii]x.vol[ii]): return False s_mars = self._meta_vars() x_mars = x._meta_vars() for ii in xrange(np.size(s_mars)): if(np.all(s_mars[ii]x_mars[ii])): return False return True return False def __gt__(self,x): ## __gt__ : self > x if(isinstance(x,space)): if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)): raise ValueError(about._errors.cstring("ERROR: incomparable spaces.")) elif(self.discrete==x.discrete): ## data types are ignored for ii in xrange(np.size(self.para)): if(self.para[ii]>x.para[ii]): return True elif(self.para[ii]x.vol[ii]): return True elif(self.vol[ii]x_mars[ii])): return True elif(np.any(s_mars[ii]= x if(isinstance(x,space)): if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)): raise ValueError(about._errors.cstring("ERROR: incomparable spaces.")) elif(self.discrete==x.discrete): ## data types are ignored for ii in xrange(np.size(self.para)): if(self.para[ii]>x.para[ii]): return True if(self.para[ii]x.vol[ii]): return True if(self.vol[ii]x_mars[ii])): return True elif(np.any(s_mars[ii] foreign: " + str(x.dtype) \ + ") and will be casted! "\ + "Potential loss of precision!\n") temp = x.copy_empty(dtype=self.datatype) temp.set_local_data(x.get_local_data()) temp.hermitian = x.hermitian x = temp return x ## Case 3: x is something else ## Use general d2o casting x = distributed_data_object(x, global_shape=self.get_shape(),\ dtype=self.datatype) ## Cast the d2o return self.cast(x) def _cast_to_np(self, x, verbose = False): """ Computes valid field values from a given object, trying to translate the given data into a valid form. Thereby it is as benevolent as possible. Parameters ---------- x : {float, numpy.ndarray, nifty.field} Object to be transformed into an array of valid field values. Returns ------- x : numpy.ndarray, distributed_data_object Array containing the field values, which are compatible to the space. Other parameters ---------------- verbose : bool, *optional* Whether the method should raise a warning if information is lost during casting (default: False). """ ## Case 1: x is a field if isinstance(x, field): if verbose: ## Check if the domain matches if(self != x.domain): about.warnings.cflush(\ "WARNING: Getting data from foreign domain!") ## Extract the data, whatever it is, and cast it again return self.cast(x.val) ## Case 2: x is a distributed_data_object if isinstance(x, distributed_data_object): ## Extract the data temp = x.get_full_data() ## Cast the resulting numpy array again return self.cast(temp) elif isinstance(x, np.ndarray): ## Check the shape if np.any(x.shape != self.get_shape()): ## Check if at least the number of degrees of freedom is equal if x.size == self.get_dim(): ## If the number of dof is equal or 1, use np.reshape... temp = x.reshape(self.get_shape()) ## ... and cast again return self.cast(temp) elif x.size == 1: temp = np.empty(shape = self.get_shape(), dtype = self.datatype) temp[:] = x return self.cast(temp) else: raise ValueError(about._errors.cstring(\ "ERROR: Data has incompatible shape!")) ## Check the datatype if x.dtype < self.datatype: about.warnings.cflush(\ "WARNING: Datatypes are uneqal/of conflicting precision (own: "\ + str(self.datatype) + " <> foreign: " + str(x.dtype) \ + ") and will be casted! "\ + "Potential loss of precision!\n") ## Fix the datatype... temp = x.astype(self.datatype) ##... and cast again return self.cast(temp) return x ## Case 3: x is something else ## Use general numpy casting else: temp = np.empty(self.get_shape(), dtype = self.datatype) temp[:] = x return temp def enforce_shape(self,x): """ Shapes an array of valid field values correctly, according to the specifications of the space instance. Parameters ---------- x : numpy.ndarray Array containing the field values to be put into shape. Returns ------- y : numpy.ndarray Correctly shaped array. """ about.warnings.cprint("WARNING: enforce_shape is deprecated!") x = np.array(x) if(np.size(x)!=self.dim(split=False)): raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(x))+" <> "+str(self.dim(split=False))+" ).")) # elif(not np.all(np.array(np.shape(x))==self.dim(split=True))): # about.warnings.cprint("WARNING: reshaping forced.") return x.reshape(self.dim(split=True),order='C') ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_values(self,x,extend=True): """ Computes valid field values from a given object, according to the constraints from the space instance. Parameters ---------- x : {float, numpy.ndarray, nifty.field} Object to be transformed into an array of valid field values. Returns ------- x : numpy.ndarray Array containing the valid field values. Other parameters ---------------- extend : bool, *optional* Whether a scalar is extented to a constant array or not (default: True). """ about.warnings.cprint("WARNING: enforce_values is deprecated! "+ "Please use cast() in future!") if(isinstance(x,field)): if(self==x.domain): if(self.datatype is not x.domain.datatype): raise TypeError(about._errors.cstring("ERROR: inequal data types ( '"+str(np.result_type(self.datatype))+"' <> '"+str(np.result_type(x.domain.datatype))+"' ).")) else: x = np.copy(x.val) else: raise ValueError(about._errors.cstring("ERROR: inequal domains.")) else: if(np.size(x)==1): if(extend): x = self.datatype(x)*np.ones(self.dim(split=True),dtype=self.datatype,order='C') else: if(np.isscalar(x)): x = np.array([x],dtype=self.datatype) else: x = np.array(x,dtype=self.datatype) else: x = self.enforce_shape(np.array(x,dtype=self.datatype)) ## check finiteness if(not np.all(np.isfinite(x))): about.warnings.cprint("WARNING: infinite value(s).") return x ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_random_values(self, **kwargs): """ Generates random field values according to the specifications given by the parameters. Returns ------- x : numpy.ndarray Valid field values. Other parameters ---------------- random : string, *optional* Specifies the probability distribution from which the random numbers are to be drawn. Supported distributions are: - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i} - "gau" (normal distribution with zero-mean and a given standard deviation or variance) - "syn" (synthesizes from a given power spectrum) - "uni" (uniform distribution over [vmin,vmax[) (default: None). dev : float, *optional* Standard deviation (default: 1). var : float, *optional* Variance, overriding `dev` if both are specified (default: 1). spec : {scalar, list, numpy.ndarray, nifty.field, function}, *optional* Power spectrum (default: 1). pindex : numpy.ndarray, *optional* Indexing array giving the power spectrum index of each band (default: None). kindex : numpy.ndarray, *optional* Scale of each band (default: None). codomain : nifty.space, *optional* A compatible codomain with power indices (default: None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). vmin : float, *optional* Lower limit for a uniform distribution (default: 0). vmax : float, *optional* Upper limit for a uniform distribution (default: 1). """ arg = random.parse_arguments(self, **kwargs) if arg is None: return self.cast(0) if self.datamodel == 'np': if arg[0] == "pm1": x = random.pm1(datatype=self.datatype, shape=self.get_shape()) elif arg[0] == "gau": x = random.gau(datatype=self.datatype, shape=self.get_shape(), mean=None, dev=arg[2], var=arg[3]) elif arg[0] == "uni": x = random.uni(datatype=self.datatype, shape=self.get_shape(), vmin=arg[1], vmax=arg[2]) else: raise KeyError(about._errors.cstring("ERROR: unsupported random key '"+str(arg[0])+"'.")) return x elif self.datamodel == 'd2o': ## Prepare the empty distributed_data_object sample = distributed_data_object(global_shape=self.get_shape(), dtype=self.datatype) ## Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i} if arg[0] == 'pm1': gen = lambda s: random.pm1(datatype=self.datatype, shape = s) sample.apply_generator(gen) ## Case 2: normal distribution with zero-mean and a given standard ## deviation or variance elif arg[0] == 'gau': var = arg[3] if np.isscalar(var) == True or var is None: processed_var = var else: try: processed_var = sample.distributor.\ extract_local_data(var) except(AttributeError): processed_var = var gen = lambda s: random.gau(datatype=self.datatype, shape = s, mean = arg[1], dev = arg[2], var = processed_var) sample.apply_generator(gen) ## Case 3: uniform distribution elif arg[0] == 'gau': var = arg[3] if np.isscalar(var) == True or var is None: processed_var = var else: try: processed_var = sample.distributor.extract_local_data(var) except(AttributeError): processed_var = var gen = lambda s: random.gau(datatype=self.datatype, shape = s, mean = arg[1], dev = arg[2], var = processed_var) sample.apply_generator(gen) return sample else: raise NotImplementedError(about._errors.cstring( "ERROR: function is not implemented for given datamodel.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def check_codomain(self,codomain): """ Checks whether a given codomain is compatible to the space or not. Parameters ---------- codomain : nifty.space Space to be checked for compatibility. Returns ------- check : bool Whether or not the given codomain is compatible to the space. """ if not isinstance(codomain, space): raise TypeError(about._errors.cstring( "ERROR: invalid input. The given input is no nifty space.")) if codomain == self: return True else: return False ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_power(self,spec,**kwargs): """ Raises an error since the power spectrum is ill-defined for point spaces. """ raise AttributeError(about._errors.cstring( "ERROR: the definition of power spectra is ill-defined for "+ "(unstructured) point spaces.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def set_power_indices(self,**kwargs): """ Raises ------ AttributeError Always. -- The power spectrum is ill-defined for point spaces. """ about.warnings.cflush(\ "WARNING: set_power_indices is a deprecated function. Please use self.cast") raise AttributeError(about._errors.cstring( "ERROR: the definition of power spectra indexing is ill-defined.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_codomain(self, **kwargs): """ Generates a compatible codomain to which transformations are reasonable, in this case another instance of :py:class:`point_space` with the same properties. Returns ------- codomain : nifty.point_space A compatible codomain. """ return self.copy() ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_meta_volume(self, total=False): """ Calculates the meta volumes. The meta volumes are the volumes associated with each component of a field, taking into account field components that are not explicitly included in the array of field values but are determined by symmetry conditions. Parameters ---------- total : bool, *optional* Whether to return the total meta volume of the space or the individual ones of each field component (default: False). Returns ------- mol : {numpy.ndarray, float} Meta volume of the field components or the complete space. Notes ----- Since point spaces are unstructured, the meta volume of each component is one, the total meta volume of the space is the number of points. """ if total == True: return self.get_dim() else: return np.ones(self.get_shape(), dtype=self.vol.dtype) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_weight(self, x, power=1): """ Weights a given array of field values with the pixel volumes (not the meta volumes) to a given power. Parameters ---------- x : numpy.ndarray Array to be weighted. power : float, *optional* Power of the pixel volumes to be used (default: 1). Returns ------- y : numpy.ndarray Weighted array. """ #x = self.enforce_shape(np.array(x,dtype=self.datatype)) ## weight return x * self.get_weight(power = power) #return x*self.vol**power def get_weight(self, power = 1): return self.vol**power ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_dot(self, x, y): """ Computes the discrete inner product of two given arrays of field values. Parameters ---------- x : numpy.ndarray First array y : numpy.ndarray Second array Returns ------- dot : scalar Inner product of the two arrays. """ x = self.cast(x) y = self.cast(y) if self.datamodel == 'np': result = np.vdot(x, y) elif self.datamodel == 'd2o': result = x.vdot(y) else: raise NotImplementedError(about._errors.cstring( "ERROR: function is not implemented for given datamodel.")) if np.isreal(result): result = np.asscalar(np.real(result)) return result ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_transform(self, x, codomain=None, **kwargs): """ Computes the transform of a given array of field values. Parameters ---------- x : numpy.ndarray Array to be transformed. codomain : nifty.space, *optional* Target space to which the transformation shall map (default: self). Returns ------- Tx : numpy.ndarray Transformed array Other parameters ---------------- iter : int, *optional* Number of iterations performed in specific transformations. """ x = self.cast(x) if (codomain is None) or (self.check_codomain(codomain) == True): return x ## T == id else: raise ValueError(about._errors.cstring("ERROR: unsupported transformation.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_smooth(self,x,**kwargs): """ Raises an error since smoothing is ill-defined on an unstructured space. """ raise AttributeError(about._errors.cstring( "ERROR: smoothing ill-defined for (unstructured) point space.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_power(self,x,**kwargs): """ Raises an error since the power spectrum is ill-defined for point spaces. """ raise AttributeError(about._errors.cstring( "ERROR: power spectra ill-defined for (unstructured) point space.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def calc_real_Q(self, x): try: return x.is_completely_real() except(AttributeError): return np.all(np.isreal(x)) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_plot(self,x,title="",vmin=None,vmax=None,unit="",norm=None,other=None,legend=False,**kwargs): """ Creates a plot of field values according to the specifications given by the parameters. Parameters ---------- x : numpy.ndarray Array containing the field values. Returns ------- None Other parameters ---------------- title : string, *optional* Title of the plot (default: ""). vmin : float, *optional* Minimum value to be displayed (default: ``min(x)``). vmax : float, *optional* Maximum value to be displayed (default: ``max(x)``). unit : string, *optional* Unit of the field values (default: ""). norm : string, *optional* Scaling of the field values before plotting (default: None). other : {single object, tuple of objects}, *optional* Object or tuple of objects to be added, where objects can be scalars, arrays, or fields (default: None). legend : bool, *optional* Whether to show the legend or not (default: False). save : string, *optional* Valid file name where the figure is to be stored, by default the figure is not saved (default: False). """ if(not pl.isinteractive())and(not bool(kwargs.get("save",False))): about.warnings.cprint("WARNING: interactive mode off.") x = self.cast(x) fig = pl.figure(num=None,figsize=(6.4,4.8),dpi=None,facecolor="none",edgecolor="none",frameon=False,FigureClass=pl.Figure) ax0 = fig.add_axes([0.12,0.12,0.82,0.76]) xaxes = np.arange(self.para[0],dtype=np.int) if(vmin is None): if(np.iscomplexobj(x)): vmin = min(np.min(np.absolute(x),axis=None,out=None),np.min(np.real(x),axis=None,out=None),np.min(np.imag(x),axis=None,out=None)) else: vmin = np.min(x,axis=None,out=None) if(vmax is None): if(np.iscomplexobj(x)): vmax = max(np.max(np.absolute(x),axis=None,out=None),np.max(np.real(x),axis=None,out=None),np.max(np.imag(x),axis=None,out=None)) else: vmax = np.max(x,axis=None,out=None) if(norm=="log")and(vmin<=0): raise ValueError(about._errors.cstring("ERROR: nonpositive value(s).")) if(np.iscomplexobj(x)): ax0.scatter(xaxes,np.absolute(x),s=20,color=[0.0,0.5,0.0],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph (absolute)",linewidths=None,verts=None,zorder=1) ax0.scatter(xaxes,np.real(x),s=20,color=[0.0,0.5,0.0],marker='s',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph (real part)",linewidths=None,verts=None,facecolor="none",zorder=1) ax0.scatter(xaxes,np.imag(x),s=20,color=[0.0,0.5,0.0],marker='D',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph (imaginary part)",linewidths=None,verts=None,facecolor="none",zorder=1) if(legend): ax0.legend() elif(other is not None): ax0.scatter(xaxes,x,s=20,color=[0.0,0.5,0.0],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph 0",linewidths=None,verts=None,zorder=1) if(isinstance(other,tuple)): other = [self.enforce_values(xx,extend=True) for xx in other] else: other = [self.enforce_values(other,extend=True)] imax = max(1,len(other)-1) for ii in xrange(len(other)): ax0.scatter(xaxes,other[ii],s=20,color=[max(0.0,1.0-(2*ii/imax)**2),0.5*((2*ii-imax)/imax)**2,max(0.0,1.0-(2*(ii-imax)/imax)**2)],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph "+str(ii),linewidths=None,verts=None,zorder=-ii) if(legend): ax0.legend() else: ax0.scatter(xaxes,x,s=20,color=[0.0,0.5,0.0],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph 0",linewidths=None,verts=None,zorder=1) ax0.set_xlim(xaxes[0],xaxes[-1]) ax0.set_xlabel("index") ax0.set_ylim(vmin,vmax) if(norm=="log"): ax0.set_yscale('log') if(unit): unit = " ["+unit+"]" ax0.set_ylabel("values"+unit) ax0.set_title(title) if(bool(kwargs.get("save",False))): fig.savefig(str(kwargs.get("save")),dpi=None,facecolor="none",edgecolor="none",orientation="portrait",papertype=None,format=None,transparent=False,bbox_inches=None,pad_inches=0.1) pl.close(fig) else: fig.canvas.draw() ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __repr__(self): return "" def __str__(self): return "nifty_core.point_space instance\n- num = "+str(self.para[0])+"\n- datatype = numpy."+str(np.result_type(self.datatype)) ##----------------------------------------------------------------------------- class nested_space(space): """ .. __ __ .. / /_ / / .. __ ___ _______ _______ / _/ _______ ____/ / .. / _ | / __ / / _____/ / / / __ / / _ / .. / / / / / /____/ /_____ / / /_ / /____/ / /_/ / .. /__/ /__/ \______/ /_______/ \___/ \______/ \______| space class NIFTY subclass for product spaces Parameters ---------- nest : list A list of space instances that are to be combined into a product space. Notes ----- Note that the order of the spaces is important for some of the methods. Attributes ---------- nest : list List of the space instances that are combined into the product space, any instances of the :py:class:`nested_space` class itself are further unraveled. para : numpy.ndarray One-dimensional array containing the dimensions of all the space instances (split up into their axes when applicable) that are contained in the nested space. datatype : numpy.dtype Data type of the field values, inherited from the innermost space, i.e. that last entry in the `nest` list. discrete : bool Whether or not the product space is discrete, ``True`` only if all subspaces are discrete. """ def __init__(self, nest): """ Sets the attributes for a nested_space class instance. Parameters ---------- nest : list A list of space instances that are to be combined into a product space. Returns ------- None """ if(not isinstance(nest,list)): raise TypeError(about._errors.cstring("ERROR: invalid input.")) ## check nest purenest = [] pre_para = [] for nn in nest: if(not isinstance(nn,space)): raise TypeError(about._errors.cstring("ERROR: invalid input.")) elif(isinstance(nn,nested_space)): ## no 2nd level nesting for nn_ in nn.nest: purenest.append(nn_) pre_para = pre_para + [nn_.dim(split=True)] else: purenest.append(nn) pre_para = pre_para + [nn.dim(split=True)] if(len(purenest)<2): raise ValueError(about._errors.cstring("ERROR: invalid input.")) self.nest = purenest self.paradict = nested_space_paradict(ndim=len(pre_para)) for i in range(len(pre_para)): self.paradict[i]=pre_para[i] ## check data type for nn in self.nest[:-1]: if(nn.datatype!=self.nest[-1].datatype): ## may conflict permutability about.infos.cprint("INFO: ambiguous data type.") break self.datatype = self.nest[-1].datatype self.discrete = np.prod([nn.discrete for nn in self.nest],axis=0,dtype=np.bool,out=None) self.vol = np.prod([nn.get_meta_volume(total=True) for nn in self.nest],axis=0,dtype=None,out=None) ## total volume @property def para(self): temp = [] for i in range(self.paradict.ndim): temp = np.append(temp, self.paradict[i]) return temp @para.setter def para(self, x): dict_iter = 0 x_iter = 0 while dict_iter < self.paradict.ndim: temp = x[x_iter:x_iter+len(self.paradict[dict_iter])] self.paradict[dict_iter] = temp x_iter = x_iter+len(self.paradict[dict_iter]) dict_iter += 1 ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def copy(self): return nested_space(nest = self.nest) def get_shape(self): temp = [] for i in range(self.paradict.ndim): temp = np.append(temp, self.paradict[i]) return temp def get_dim(self,split=False): """ Computes the dimension of the product space. Parameters ---------- split : bool, *optional* Whether to return the dimension split up into the dimensions of each subspace, each one of these split up into the number of pixels along each axis when applicable, or not (default: False). Returns ------- dim : {int, numpy.ndarray} Dimension(s) of the space. """ if(split): return self.get_shape() #return self.para else: return np.prod(self.get_shape()) #return np.prod(self.para,axis=0,dtype=None,out=None) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_dof(self): """ Computes the number of degrees of freedom of the product space, as the product of the degrees of freedom of each subspace. Returns ------- dof : int Number of degrees of freedom of the space. """ return np.prod([nn.get_dof() for nn in self.nest],axis=0,dtype=None,out=None) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_power(self,spec,**kwargs): """ Raises an error since there is no canonical definition for the power spectrum on a generic product space. """ raise AttributeError(about._errors.cstring("ERROR: power spectra ill-defined.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def set_power_indices(self,**kwargs): """ Raises ------ AttributeError Always. -- There is no canonical definition for the power spectrum on a generic product space. """ raise AttributeError(about._errors.cstring("ERROR: power spectra indexing ill-defined.")) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def enforce_values(self,x,extend=True): """ Computes valid field values from a given object, according to the constraints from the space instances that make up the product space. Parameters ---------- x : {float, numpy.ndarray, nifty.field} Object to be transformed into an array of valid field values. Returns ------- x : numpy.ndarray Array containing the valid field values. Other parameters ---------------- extend : bool, *optional* Whether a scalar is extented to a constant array or not (default: True). """ if(isinstance(x,field)): if(self==x.domain): if(self.datatype is not x.domain.datatype): raise TypeError(about._errors.cstring("ERROR: inequal data types ( '"+str(np.result_type(self.datatype))+"' <> '"+str(np.result_type(x.domain.datatype))+"' ).")) else: x = np.copy(x.val) elif(self.nest[-1]==x.domain): if(self.datatype is not x.domain.datatype): raise TypeError(about._errors.cstring("ERROR: inequal data types ( '"+str(np.result_type(self.datatype))+"' <> '"+str(np.result_type(x.domain.datatype))+"' ).")) else: subshape = self.para[:-np.size(self.nest[-1].dim(split=True))] x = np.tensordot(np.ones(subshape,dtype=self.datatype,order='C'),x.val,axes=0) elif(isinstance(x.domain,nested_space)): if(self.datatype is not x.domain.datatype): raise TypeError(about._errors.cstring("ERROR: inequal data types ( '"+str(np.result_type(self.datatype))+"' <> '"+str(np.result_type(x.domain.datatype))+"' ).")) else: if(np.all(self.nest[-len(x.domain.nest):]==x.domain.nest)): subshape = self.para[:np.sum([np.size(nn.dim(split=True)) for nn in self.nest[:-len(x.domain.nest)]],axis=0,dtype=np.int,out=None)] x = np.tensordot(np.ones(subshape,dtype=self.datatype,order='C'),x.val,axes=0) else: raise ValueError(about._errors.cstring("ERROR: inequal domains.")) else: raise ValueError(about._errors.cstring("ERROR: inequal domains.")) else: if(np.size(x)==1): if(extend): x = self.datatype(x)*np.ones(self.para,dtype=self.datatype,order='C') else: if(np.isscalar(x)): x = np.array([x],dtype=self.datatype) else: x = np.array(x,dtype=self.datatype) else: x = np.array(x,dtype=self.datatype) if(np.ndim(x)" def __str__(self): return "nifty_core.nested_space instance\n- nest = "+str(self.nest) ##----------------------------------------------------------------------------- ##============================================================================= class field(object): """ .. ____ __ __ __ .. / _/ /__/ / / / / .. / /_ __ _______ / / ____/ / .. / _/ / / / __ / / / / _ / .. / / / / / /____/ / /_ / /_/ / .. /__/ /__/ \______/ \___/ \______| class Basic NIFTy class for fields. Parameters ---------- domain : space The space wherein valid arguments live. val : {scalar, ndarray}, *optional* Defines field values, either to be given by a number interpreted as a constant array, or as an arbitrary array consistent with the space defined in domain or to be drawn from a random distribution controlled by kwargs. target : space, *optional* The space wherein the operator output lives (default: domain). Other Parameters ---------------- random : string Indicates that the field values should be drawn from a certain distribution using a pseudo-random number generator. Supported distributions are: - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i} - "gau" (normal distribution with zero-mean and a given standard deviation or variance) - "syn" (synthesizes from a given power spectrum) - "uni" (uniform distribution over [vmin,vmax[) dev : scalar Sets the standard deviation of the Gaussian distribution (default=1). var : scalar Sets the variance of the Gaussian distribution, outranking the dev parameter (default=1). spec : {scalar, list, array, field, function} Specifies a power spectrum from which the field values should be synthesized (default=1). Can be given as a constant, or as an array with indvidual entries per mode. log : bool Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array} User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : scalar Sets the lower limit for the uniform distribution. vmax : scalar Sets the upper limit for the uniform distribution. Attributes ---------- domain : space The space wherein valid arguments live. val : {scalar, ndarray}, *optional* Defines field values, either to be given by a number interpreted as a constant array, or as an arbitrary array consistent with the space defined in domain or to be drawn from a random distribution controlled by the keyword arguments. target : space, *optional* The space wherein the operator output lives (default: domain). """ def __init__(self, domain, val=None, target=None, **kwargs): """ Sets the attributes for a field class instance. Parameters ---------- domain : space The space wherein valid arguments live. val : {scalar,ndarray}, *optional* Defines field values, either to be given by a number interpreted as a constant array, or as an arbitrary array consistent with the space defined in domain or to be drawn from a random distribution controlled by the keyword arguments. target : space, *optional* The space wherein the operator output lives (default: domain). Returns ------- Nothing """ ## check domain if not isinstance(domain,space): raise TypeError(about._errors.cstring("ERROR: invalid input.")) self.domain = domain ## check codomain if target is None: target = domain.get_codomain() else: assert(self.domain.check_codomain(target)) self.target = target if val == None: if kwargs == {}: self.val = self.domain.cast(0.) else: self.val = self.domain.get_random_values(codomain=self.target, **kwargs) else: self.val = val @property def val(self): return self.__val @val.setter def val(self, x): self.__val = self.domain.cast(x) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def copy(self, domain=None, target=None): new_field = self.copy_empty(domain=domain, target=target) new_field.val = new_field.domain.cast(self.val.copy()) return new_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def copy_empty(self, domain=None, target=None, **kwargs): if domain == None: domain = self.domain if target == None: target = self.target new_field = field(domain=domain, target=target, **kwargs) return new_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def dim(self, split=False): """ Computes the (array) dimension of the underlying space. Parameters ---------- split : bool Sets the output to be either split up per axis or in form of total number of field entries in all dimensions (default=False) Returns ------- dim : {scalar, ndarray} Dimension of space. """ return self.domain.dim(split=split) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def cast_domain(self, newdomain, new_target=None, force=True): """ Casts the domain of the field. Parameters ---------- newdomain : space New space wherein the field should live. new_target : space, *optional* Space wherein the transform of the field should live. When not given, target will automatically be the codomain of the newly casted domain (default=None). force : bool, *optional* Whether to force reshaping of the field if necessary or not (default=True) Returns ------- Nothing """ ## Check if the newdomain is a space if not isinstance(newdomain,space): raise TypeError(about._errors.cstring("ERROR: invalid input.")) ## Check if the datatypes match elif newdomain.datatype != self.domain.datatype: raise TypeError(about._errors.cstring( "ERROR: inequal data types '" + str(np.result_type(newdomain.datatype)) + "' and '" + str(np.result_type(self.domain.datatype)) + "'.")) ## Check if the total dimensions match elif newdomain.dim() != self.domain.dim(): raise ValueError(about._errors.cstring( "ERROR: dimension mismatch ( " + str(newdomain.dim()) + " <> " + str(self.domain.dim()) + " ).")) if force == True: self.set_domain(new_domain = newdomain, force = True) else: if not np.all(newdomain.dim(split=True) == \ self.domain.dim(split=True)): raise ValueError(about._errors.cstring( "ERROR: shape mismatch ( " + str(newdomain.dim(split=True)) + " <> " + str(self.domain.dim(split=True)) + " ).")) else: self.domain = newdomain ## Use the casting of the new domain in order to make the old data fit. self.set_val(new_val = self.val) ## set the target if new_target == None: if not self.domain.check_codomain(self.target): if(force): about.infos.cprint("INFO: codomain set to default.") else: about.warnings.cprint("WARNING: codomain set to default.") self.set_target(new_target = self.domain.get_codomain()) else: self.set_target(new_target = new_target, force = force) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def set_val(self, new_val): """ Resets the field values. Parameters ---------- new_val : {scalar, ndarray} New field values either as a constant or an arbitrary array. """ self.val = new_val return self.val def get_val(self): return self.val ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def set_domain(self, new_domain=None, force=False): if new_domain is None: new_domain = self.target.get_codomain() elif force == False: assert(self.target.check_codomain(new_domain)) self.domain = new_domain return self.domain def set_target(self, new_target=None, force=False): """ Resets the codomain of the field. Parameters ---------- new_target : space The new space wherein the transform of the field should live. (default=None). """ ## check codomain if new_target is None: new_target = self.domain.get_codomain() elif force == False: assert(self.domain.check_codomain(new_target)) self.target = new_target return self.target ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def weight(self, power=1, overwrite=False): """ Returns the field values, weighted with the volume factors to a given power. The field values will optionally be overwritten. Parameters ---------- power : scalar, *optional* Specifies the optional power coefficient to which the field values are taken (default=1). overwrite : bool, *optional* Whether to overwrite the field values or not (default: False). Returns ------- field : field, *optional* If overwrite is False, the weighted field is returned. Otherwise, nothing is returned. """ if overwrite == True: new_field = self else: new_field = self.copy_empty() new_field.set_val(new_val = self.domain.calc_weight(self.get_val(), power = power)) return new_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def dot(self, x=None): """ Computes the inner product of the field with a given object implying the correct volume factor needed to reflect the discretization of the continuous fields. Parameters ---------- x : {scalar, ndarray, field}, *optional* The object with which the inner product is computed (default=None). Returns ------- dot : scalar The result of the inner product. """ ## Case 1: x equals None if x == None: return None ## Case 2: x is a field elif isinstance(x, field): ## if x lives in the cospace, transform it an make a ## recursive call try: if self.domain.fourier != x.domain.fourier: return self.dot(x = x.transform()) except(AttributeError): pass ## whether the domain matches exactly or not: ## extract the data from x and try to dot with this return self.dot(x = x.get_val()) ## Case 3: x is something else else: ## Cast the input in order to cure datatype and shape differences casted_x = self.domain.cast(x) ## Compute the dot respecting the fact of discrete/continous spaces if self.domain.discrete == True: return self.domain.calc_dot(self.get_val(), casted_x) else: return self.domain.calc_dot(self.get_val(), self.domain.calc_weight( casted_x, power=1)) def norm(self, q=0.5): """ Computes the Lq-norm of the field values. Parameters ---------- q : scalar Parameter q of the Lq-norm (default: 2). Returns ------- norm : scalar The Lq-norm of the field values. """ if q == 0.5: return (self.dot(x = self))**(1/2) else: return self.dot(x = self**(q-1))**(1/q) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## TODO: rework the nested space semantics in order to become compatible ## with the usual space interface def pseudo_dot(self,x=1,**kwargs): """ Computes the pseudo inner product of the field with a given object implying the correct volume factor needed to reflect the discretization of the continuous fields. This method specifically handles the inner products of fields defined over a :py:class:`nested_space`. Parameters ---------- x : {scalar, ndarray, field}, *optional* The object with which the inner product is computed (default=None). Other Parameters ---------------- target : space, *optional* space wherein the transform of the output field should live (default: None). Returns ------- pot : ndarray The result of the pseudo inner product. Examples -------- Pseudo inner product of a field defined over a nested space with a simple field defined over a rg_space. >>> from nifty import * >>> space = rg_space(2) >>> nspace = nested_space([space,space]) >>> nval = array([[1,2],[3,4]]) >>> nfield = nifty.field(domain = nspace, val = nval) >>> val = array([1,1]) >>> nfield.pseudo_dot(x=val).val array([ 1.5, 3.5]) """ ## check attribute if(not hasattr(self.domain,"calc_pseudo_dot")): if(isinstance(x,field)): if(hasattr(x.domain,"calc_pseudo_dot")): return x.pseudo_dot(x=self,**kwargs) about.warnings.cprint("WARNING: computing (normal) inner product.") return self.dot(x=x) ## strip field (calc_pseudo_dot handles subspace) if(isinstance(x,field)): if(np.size(x.dim(split=True))>np.size(self.dim(split=True))): ## switch return x.pseudo_dot(x=self,**kwargs) else: try: return self.pseudo_dot(x=x.val,**kwargs) except(TypeError,ValueError): try: return self.pseudo_dot(x=x.transform(target=x.target,overwrite=False).val,**kwargs) except(TypeError,ValueError): raise ValueError(about._errors.cstring("ERROR: incompatible domains.")) ## pseudo inner product (calc_pseudo_dot handles weights) else: if(np.isscalar(x)): x = np.array([x],dtype=self.domain.datatype) else: x = np.array(x,dtype=self.domain.datatype) if(np.size(x)>self.dim(split=False)): raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(x))+" <> "+str(self.dim(split=False))+" ).")) elif(np.size(x)==self.dim(split=False)): about.warnings.cprint("WARNING: computing (normal) inner product.") return self.dot(x=x) else: return self.domain.calc_pseudo_dot(self.val,x,**kwargs) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## TODO: rework the nested space semantics in order to become compatible ## with the usual space interface def tensor_dot(self,x=None,**kwargs): """ Computes the tensor product of a field defined on a arbitrary domain with a given object defined on another arbitrary domain. Parameters ---------- x : {scalar, ndarray, field}, *optional* The object with which the inner product is computed (default=None). Other Parameters ---------------- target : space, *optional* space wherein the transform of the output field should live (default: None). Returns ------- tot : field The result of the tensor product, a field defined over a nested space. """ if(x is None): return self elif(isinstance(x,field)): return field(nested_space([self.domain,x.domain]),val=np.tensordot(self.val,x.val,axes=0),**kwargs) else: return field(nested_space([self.domain,self.domain]),val=np.tensordot(self.val,self.domain.enforce_values(x,extend=True),axes=0),**kwargs) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def conjugate(self, inplace=False): """ Computes the complex conjugate of the field. Returns ------- cc : field The complex conjugated field. """ if inplace == True: work_field = self else: work_field = self.copy_empty() work_field.set_val(new_val = self.val.conjugate()) return work_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def transform(self, target=None, overwrite=False, **kwargs): """ Computes the transform of the field using the appropriate conjugate transformation. Parameters ---------- target : space, *optional* Domain of the transform of the field (default:self.target) overwrite : bool, *optional* Whether to overwrite the field or not (default: False). Other Parameters ---------------- iter : scalar Number of iterations (default: 0) Returns ------- field : field, *optional* If overwrite is False, the transformed field is returned. Otherwise, nothing is returned. """ if(target is None): target = self.target else: assert(self.domain.check_codomain(target)) new_val = self.domain.calc_transform(self.val, codomain=target, **kwargs) if overwrite == True: return_field = self return_field.set_target(new_target = self.domain, force = True) return_field.set_domain(new_domain = target, force = True) else: return_field = self.copy_empty(domain = self.target, target = self.domain) return_field.set_val(new_val = new_val) return return_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def smooth(self, sigma=0, overwrite=False, **kwargs): """ Smoothes the field by convolution with a Gaussian kernel. Parameters ---------- sigma : scalar, *optional* standard deviation of the Gaussian kernel specified in units of length in position space (default: 0) overwrite : bool, *optional* Whether to overwrite the field or not (default: False). Other Parameters ---------------- iter : scalar Number of iterations (default: 0) Returns ------- field : field, *optional* If overwrite is False, the transformed field is returned. Otherwise, nothing is returned. """ if overwrite == True: new_field = self else: new_field = self.copy_empty() new_field.set_val(new_val = self.domain.calc_smooth(self.get_val(), sigma = sigma, **kwargs)) return new_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def power(self, **kwargs): """ Computes the power spectrum of the field values. Other Parameters ---------------- pindex : ndarray, *optional* Specifies the indexing array for the distribution of indices in conjugate space (default: None). kindex : numpy.ndarray, *optional* Scale corresponding to each band in the power spectrum (default: None). rho : scalar Number of degrees of freedom per irreducible band (default=None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). iter : scalar Number of iterations (default: 0) Returns ------- spec : ndarray Returns the power spectrum. """ if("codomain" in kwargs): kwargs.__delitem__("codomain") about.warnings.cprint("WARNING: codomain was removed from kwargs.") return self.domain.calc_power(self.get_val(), codomain = self.target, **kwargs) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def hat(self): """ Translates the field into a diagonal operator. Returns ------- D : operator The new diagonal operator instance. """ from nifty.operators.nifty_operators import diagonal_operator return diagonal_operator(domain=self.domain, diag=self.get_val(), bare=False) def inverse_hat(self): """ Translates the inverted field into a diagonal operator. Returns ------- D : operator The new diagonal operator instance. """ if(np.any(self.val==0)): raise AttributeError( about._errors.cstring("ERROR: singular operator.")) else: from nifty.operators.nifty_operators import diagonal_operator return diagonal_operator(domain=self.domain, diag=(1/self).get_val(), bare=False) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def plot(self,**kwargs): """ Plots the field values using matplotlib routines. Other Parameters ---------------- title : string Title of the plot (default= ""). vmin : scalar Minimum value displayed (default=min(x)). vmax : scalar Maximum value displayed (default=max(x)). power : bool Whether to plot the power spectrum or the array (default=None). unit : string The unit of the field values (default=""). norm : scalar A normalization (default=None). cmap : cmap A color map (default=None). cbar : bool Whether to show the color bar or not (default=True). other : {scalar, ndarray, field} Object or tuple of objects to be added (default=None). legend : bool Whether to show the legend or not (default=False). mono : bool Whether to plot the monopol of the power spectrum or not (default=True). save : string, *optional* Valid file name where the figure is to be stored, by default the figure is not saved (default: False). error : {scalar, ndarray, field} object indicating some confidence intervall (default=None). iter : scalar Number of iterations (default: 0). kindex : scalar The spectral index per irreducible band (default=None). log : bool, *optional* Flag specifying if the spectral binning is performed on logarithmic scale or not; if set, the number of used bins is set automatically (if not given otherwise); by default no binning is done (default: None). nbin : integer, *optional* Number of used spectral bins; if given `log` is set to ``False``; integers below the minimum of 3 induce an automatic setting; by default no binning is done (default: None). binbounds : {list, array}, *optional* User specific inner boundaries of the bins, which are preferred over the above parameters; by default no binning is done (default: None). vmin : {scalar, list, ndarray, field}, *optional* Lower limit of the uniform distribution if ``random == "uni"`` (default: 0). Notes ----- The applicability of the keyword arguments depends on the respective space on which the field is defined. Confer to the corresponding :py:meth:`get_plot` method. """ ## if a save path is given, set pylab to not-interactive remember_interactive = pl.isinteractive() pl.matplotlib.interactive(not bool(kwargs.get("save", False))) if "codomain" in kwargs: kwargs.__delitem__("codomain") about.warnings.cprint("WARNING: codomain was removed from kwargs.") ## draw/save the plot(s) self.domain.get_plot(self.val, codomain=self.target, **kwargs) ## restore the pylab interactiveness pl.matplotlib.interactive(remember_interactive) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __repr__(self): return "" def __str__(self): minmax = [self.val.amin(), self.val.amax()] mean = self.val.mean() return "nifty_core.field instance\n- domain = " + \ repr(self.domain) + \ "\n- val = [...]" + \ "\n - min.,max. = " + str(minmax) + \ "\n - mean = " + str(mean) + \ "\n- target = " + repr(self.target) def __len__(self): return int(self.dim(split=True)[0]) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __getitem__(self,key): return self.domain.getitem(self.val, key) def __setitem__(self,key,value): self.domain.setitem(self.val, value, key) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def apply_scalar_function(self, function, inplace=False): if inplace == True: temp = self else: temp = self.copy_empty() data_object = self.domain.apply_scalar_function(self.val, function, inplace) temp.set_val(data_object) return temp ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def min(self,ignore=False,**kwargs): """ Returns the minimum of the field values. Parameters ---------- ignore : bool Whether to ignore NANs or not (default: False). Returns ------- amin : {scalar, ndarray} Minimum field value. See Also -------- np.amin, np.nanmin """ if ignore == True: return self.domain.unary_operation(self.val, op='nanmin', **kwargs) else: return self.domain.unary_operation(self.val, op='min', **kwargs) def max(self,ignore=False,**kwargs): """ Returns the maximum of the field values. Parameters ---------- ignore : bool Whether to ignore NANs or not (default: False). Returns ------- amax : {scalar, ndarray} Maximum field value. See Also -------- np.amax, np.nanmax """ if ignore == True: return self.domain.unary_operation(self.val, op='nanmax', **kwargs) else: return self.domain.unary_operation(self.val, op='max', **kwargs) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def med(self,**kwargs): """ Returns the median of the field values. Returns ------- med : scalar Median field value. See Also -------- np.median """ return self.domain.unary_operation(self.val, op='median', **kwargs) def mean(self,**kwargs): """ Returns the mean of the field values. Returns ------- mean : scalar Mean field value. See Also -------- np.mean """ return self.domain.unary_operation(self.val, op='mean', **kwargs) def std(self,**kwargs): """ Returns the standard deviation of the field values. Returns ------- std : scalar Standard deviation of the field values. See Also -------- np.std """ return self.domain.unary_operation(self.val, op='std', **kwargs) def var(self,**kwargs): """ Returns the variance of the field values. Returns ------- var : scalar Variance of the field values. See Also -------- np.var """ return self.domain.unary_operation(self.val, op='var', **kwargs) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def argmin(self,split=True,**kwargs): """ Returns the index of the minimum field value. Parameters ---------- split : bool Whether to split (unravel) the flat index or not; does not apply to multiple indices along some axis (default: True). Returns ------- ind : {integer, tuple, array} Index of the minimum field value being an integer for one-dimensional fields, a tuple for multi-dimensional fields, and an array in case minima along some axis are requested. See Also -------- np.argmax, np.argmin """ if split == True: return self.domain.unary_operation(self.val, op='argmin', **kwargs) else: return self.domain.unary_operation(self.val, op='argmin_flat', **kwargs) def argmax(self,split=True,**kwargs): """ Returns the index of the maximum field value. Parameters ---------- split : bool Whether to split (unravel) the flat index or not; does not apply to multiple indices along some axis (default: True). Returns ------- ind : {integer, tuple, array} Index of the maximum field value being an integer for one-dimensional fields, a tuple for multi-dimensional fields, and an array in case maxima along some axis are requested. See Also -------- np.argmax, np.argmin """ if split == True: return self.domain.unary_operation(self.val, op='argmax', **kwargs) else: return self.domain.unary_operation(self.val, op='argmax_flat', **kwargs) ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __pos__(self): new_field = self.copy_empty() new_field.val = self.domain.unary_operation(self.val, op='pos') return new_field def __neg__(self): new_field = self.copy_empty() new_field.val = self.domain.unary_operation(self.val, op='neg') return new_field def __abs__(self): new_field = self.copy_empty() new_field.val = self.domain.unary_operation(self.val, op='abs') return new_field ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __binary_helper__(self, other, op='None'): try: other_val = other.val except(AttributeError): other_val = other new_val = self.domain.binary_operation(self.val, other_val, op=op, cast=0) new_field = self.copy_empty() new_field.val = new_val return new_field def __inplace_binary_helper__(self, other, op='None'): try: other_val = other.val except(AttributeError): other_val = other self.val = self.domain.binary_operation(self.val, other_val, op=op, cast=0) return self def __add__(self, other): return self.__binary_helper__(other, op='add') __radd__ = __add__ def __iadd__(self, other): return self.__inplace_binary_helper__(other, op='iadd') def __sub__(self, other): return self.__binary_helper__(other, op='sub') def __rsub__(self, other): return self.__binary_helper__(other, op='rsub') def __isub__(self, other): return self.__inplace_binary_helper__(other, op='isub') def __mul__(self, other): return self.__binary_helper__(other, op='mul') __rmul__ = __mul__ def __imul__(self, other): return self.__inplace_binary_helper__(other, op='imul') def __div__(self, other): return self.__binary_helper__(other, op='div') def __rdiv__(self, other): return self.__binary_helper__(other, op='rdiv') def __idiv__(self, other): return self.__inplace_binary_helper__(other, op='idiv') __truediv__ = __div__ __itruediv__ = __idiv__ def __pow__(self, other): return self.__binary_helper__(other, op='pow') def __rpow__(self, other): return self.__binary_helper__(other, op='rpow') def __ipow__(self, other): return self.__inplace_binary_helper__(other, op='ipow') ##=============================================================================