import numpy as np from nifty import RGSpace, PowerSpace, Field, FFTOperator, ComposedOperator,\ DiagonalOperator, ResponseOperator, plotting,\ create_power_operator, nifty_configuration from nifty.library import WienerFilterCurvature if __name__ == "__main__": nifty_configuration['default_distribution_strategy'] = 'fftw' nifty_configuration['harmonic_rg_base'] = 'real' # Setting up variable parameters # Typical distance over which the field is correlated correlation_length = 0.05 # Variance of field in position space sqrt(<|s_x|^2>) field_variance = 2. # smoothing length of response (in same unit as L) response_sigma = 0.01 # The signal to noise ratio signal_to_noise = 0.7 # note that field_variance**2 = a*k_0/4. for this analytic form of power # spectrum def power_spectrum(k): a = 4 * correlation_length * field_variance**2 return a / (1 + k * correlation_length) ** 4 # Setting up the geometry # Total side-length of the domain L = 2. # Grid resolution (pixels per axis) N_pixels = 512 signal_space = RGSpace([N_pixels, N_pixels], distances=L/N_pixels) harmonic_space = FFTOperator.get_default_codomain(signal_space) fft = FFTOperator(harmonic_space, target=signal_space) power_space = PowerSpace(harmonic_space) # Creating the mock data S = create_power_operator(harmonic_space, power_spectrum=power_spectrum) mock_power = Field(power_space, val=power_spectrum) np.random.seed(43) mock_harmonic = mock_power.power_synthesize(real_signal=True) if nifty_configuration['harmonic_rg_base'] == 'real': mock_harmonic = mock_harmonic.real mock_signal = fft(mock_harmonic) R = ResponseOperator(signal_space, sigma=(response_sigma,)) data_domain = R.target[0] R_harmonic = ComposedOperator([fft, R], default_spaces=[0, 0]) N = DiagonalOperator(data_domain, diagonal=mock_signal.var()/signal_to_noise, bare=True) noise = Field.from_random(domain=data_domain, random_type='normal', std=mock_signal.std()/np.sqrt(signal_to_noise), mean=0) data = R(mock_signal) + noise # Wiener filter j = R_harmonic.adjoint_times(N.inverse_times(data)) wiener_curvature = WienerFilterCurvature(S=S, N=N, R=R_harmonic) m = wiener_curvature.inverse_times(j) m_s = fft(m) plotter = plotting.RG2DPlotter() plotter.path = 'mock_signal.html' plotter(mock_signal.real) plotter.path = 'data.html' plotter(Field( signal_space, val=data.val.get_full_data().real.reshape(signal_space.shape))) plotter.path = 'map.html' plotter(m_s.real)