# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # # Copyright(C) 2013-2019 Max-Planck-Society # # NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik. from ..domain_tuple import DomainTuple from ..domains.unstructured_domain import UnstructuredDomain from ..field import Field from ..multi_domain import MultiDomain from ..multi_field import MultiField from .endomorphic_operator import EndomorphicOperator from .linear_operator import LinearOperator import numpy as np class VdotOperator(LinearOperator): """Operator computing the scalar product of its input with a given Field. Parameters ---------- field : Field or MultiField The field used to build the scalar product with the operator input """ def __init__(self, field): self._field = field self._domain = field.domain self._target = DomainTuple.scalar_domain() self._capability = self.TIMES | self.ADJOINT_TIMES def apply(self, x, mode): self._check_mode(mode) if mode == self.TIMES: return self._field.vdot(x) return self._field*x.val[()] class ConjugationOperator(EndomorphicOperator): """Operator computing the complex conjugate of its input. Parameters ---------- domain: Domain, tuple of domains or DomainTuple domain of the input field """ def __init__(self, domain): self._domain = DomainTuple.make(domain) self._capability = self._all_ops def apply(self, x, mode): self._check_input(x, mode) return x.conjugate() class WeightApplier(EndomorphicOperator): """Operator multiplying its input by a given power of dvol. Parameters ---------- domain: Domain, tuple of domains or DomainTuple domain of the input field spaces: list or tuple of int indices of subdomains for which the weights shall be applied power: int the power of to be used for the volume factors """ def __init__(self, domain, spaces, power): from .. import utilities self._domain = DomainTuple.make(domain) if spaces is None: self._spaces = None else: self._spaces = utilities.parse_spaces(spaces, len(self._domain)) self._power = int(power) self._capability = self._all_ops def apply(self, x, mode): self._check_input(x, mode) power = self._power if (mode & 3) else -self._power return x.weight(power, spaces=self._spaces) class Realizer(EndomorphicOperator): """Operator returning the real component of its input. Parameters ---------- domain: Domain, tuple of domains or DomainTuple domain of the input field """ def __init__(self, domain): self._domain = DomainTuple.make(domain) self._capability = self.TIMES | self.ADJOINT_TIMES def apply(self, x, mode): self._check_input(x, mode) return x.real class FieldAdapter(LinearOperator): """Operator for conversion between Fields and MultiFields. Parameters ---------- tgt : Domain, tuple of Domain, DomainTuple, dict or MultiDomain: If this is a Domain, tuple of Domain or DomainTuple, this will be the operator's target, and its domain will be a MultiDomain consisting of its domain with the supplied `name` If this is a dict or MultiDomain, everything except for `name` will be stripped out of it, and the result will be the operator's target. Its domain will then be the DomainTuple corresponding to the single entry in the operator's domain. name : String The relevant key of the MultiDomain. """ def __init__(self, tgt, name): from ..sugar import makeDomain tmp = makeDomain(tgt) if isinstance(tmp, DomainTuple): self._target = tmp self._domain = MultiDomain.make({name: tmp}) else: self._domain = tmp[name] self._target = MultiDomain.make({name: tmp[name]}) self._capability = self.TIMES | self.ADJOINT_TIMES def apply(self, x, mode): self._check_input(x, mode) if isinstance(x, MultiField): return x.values()[0] else: return MultiField(self._tgt(mode), (x,)) def __repr__(self): s = 'FieldAdapter' dom = isinstance(self._domain, MultiDomain) tgt = isinstance(self._target, MultiDomain) if dom and tgt: s += ' {} <- {}'.format(self._target.keys(), self._domain.keys()) elif dom: s += ' <- {}'.format(self._domain.keys()) elif tgt: s += ' {} <-'.format(self._target.keys()) return s class _SlowFieldAdapter(LinearOperator): """Operator for conversion between Fields and MultiFields. The operator is built so that the MultiDomain is always the target. Its domain is `tgt[name]` Parameters ---------- dom : dict or MultiDomain: the operator's dom name : String The relevant key of the MultiDomain. """ def __init__(self, dom, name): from ..sugar import makeDomain tmp = makeDomain(dom) if not isinstance(tmp, MultiDomain): raise TypeError("MultiDomain expected") self._name = str(name) self._domain = tmp self._target = tmp[name] self._capability = self.TIMES | self.ADJOINT_TIMES def apply(self, x, mode): self._check_input(x, mode) if isinstance(x, MultiField): return x[self._name] return MultiField.from_dict({self._name: x}, domain=self._tgt(mode)) def __repr__(self): return '_SlowFieldAdapter' def ducktape(left, right, name): """Convenience function creating an operator that converts between a DomainTuple and a MultiDomain. Parameters ---------- left : None, Operator, or Domainoid Something describing the new operator's target domain. If `left` is an `Operator`, its domain is used as `left`. right : None, Operator, or Domainoid Something describing the new operator's input domain. If `right` is an `Operator`, its target is used as `right`. name : string The component of the `MultiDomain` that will be extracted/inserted Notes ----- - one of the involved domains must be a `DomainTuple`, the other a `MultiDomain`. - `left` and `right` must not be both `None`, but one of them can (and probably should) be `None`. In this case, the missing information is inferred. Returns ------- FieldAdapter or _SlowFieldAdapter an adapter operator converting between the two (possibly partially inferred) domains. """ from ..sugar import makeDomain from .operator import Operator if isinstance(right, Operator): right = right.target elif right is not None: right = makeDomain(right) if isinstance(left, Operator): left = left.domain elif left is not None: left = makeDomain(left) if left is None: # need to infer left from right if isinstance(right, MultiDomain): left = right[name] else: left = MultiDomain.make({name: right}) elif right is None: # need to infer right from left if isinstance(left, MultiDomain): right = left[name] else: right = MultiDomain.make({name: left}) lmulti = isinstance(left, MultiDomain) rmulti = isinstance(right, MultiDomain) if lmulti+rmulti != 1: raise ValueError("need exactly one MultiDomain") if lmulti: if len(left) == 1: return FieldAdapter(left, name) else: return _SlowFieldAdapter(left, name).adjoint if rmulti: if len(right) == 1: return FieldAdapter(left, name) else: return _SlowFieldAdapter(right, name) raise ValueError("must not arrive here") class GeometryRemover(LinearOperator): """Operator which transforms between a structured and an unstructured domain. Parameters ---------- domain: Domain, tuple of Domain, or DomainTuple: the full input domain of the operator. space: int, optional The index of the subdomain on which the operator should act. If None, it acts on all spaces. Notes ----- The operator will convert every sub-domain of its input domain to an UnstructuredDomain with the same shape. No weighting by volume factors is carried out. """ def __init__(self, domain, space=None): self._domain = DomainTuple.make(domain) if space is not None: tgt = [dom for dom in self._domain] tgt[space] = UnstructuredDomain(self._domain[space].shape) else: tgt = [UnstructuredDomain(dom.shape) for dom in self._domain] self._target = DomainTuple.make(tgt) self._capability = self.TIMES | self.ADJOINT_TIMES def apply(self, x, mode): self._check_input(x, mode) return x.cast_domain(self._tgt(mode)) class NullOperator(LinearOperator): """Operator corresponding to a matrix of all zeros. Parameters ---------- domain : DomainTuple or MultiDomain input domain target : DomainTuple or MultiDomain output domain """ def __init__(self, domain, target): from ..sugar import makeDomain self._domain = makeDomain(domain) self._target = makeDomain(target) self._capability = self.TIMES | self.ADJOINT_TIMES @staticmethod def _nullfield(dom): if isinstance(dom, DomainTuple): return Field(dom, 0) else: return MultiField.full(dom, 0) def apply(self, x, mode): self._check_input(x, mode) return self._nullfield(self._tgt(mode)) class PartialExtractor(LinearOperator): def __init__(self, domain, target): if not isinstance(domain, MultiDomain): raise TypeError("MultiDomain expected") if not isinstance(target, MultiDomain): raise TypeError("MultiDomain expected") self._domain = domain self._target = target for key in self._target.keys(): if self._domain[key] is not self._target[key]: raise ValueError("domain mismatch") self._capability = self.TIMES | self.ADJOINT_TIMES self._compldomain = MultiDomain.make({kk: self._domain[kk] for kk in self._domain.keys() if kk not in self._target.keys()}) def apply(self, x, mode): self._check_input(x, mode) if mode == self.TIMES: return x.extract(self._target) res0 = MultiField.from_dict({key: x[key] for key in x.domain.keys()}) res1 = MultiField.full(self._compldomain, 0.) return res0.unite(res1) class MatrixProductOperator(EndomorphicOperator): """Endomorphic matrix multiplication with input field. Parameters ---------- domain: :class:`Domain` or :class:`DomainTuple` Domain of the operator. If :class:`DomainTuple` it is assumed to have only one entry. matrix: scipy.sparse matrix or numpy array Matrix of shape `(domain.shape, domain.shape)`. Needs to support `dot()` and `transpose()` in the style of numpy arrays. axis: integer or None in case of multi-dim input fields (N > 1), along which axis of the input field to apply the matrix """ def __init__(self, domain, matrix, axis=None): self._capability = self.TIMES | self.ADJOINT_TIMES self._domain = DomainTuple.make(domain) shp = self._domain.shape if len(shp) > 1: if axis is None: raise ValueError( "For multi-dim inputs an axis needs to be specified.") ref_shp = (shp[axis], shp[axis]) else: if not (axis is None or axis == 0): raise ValueError( "For one-dim inputs axis must be None or zero") ref_shp = (shp[0], shp[0]) axis = None if matrix.shape != ref_shp: raise ValueError( "Domain/domain on axis and matrix shape do not match.") self._mat = matrix self._mat_tr = matrix.transpose().conjugate() self._axis = axis def apply(self, x, mode): self._check_input(x, mode) m = self._mat if mode == self.TIMES else self._mat_tr if self._axis is None: res = m.dot(x.val) else: res = np.tensordot(m, x.val, axes=(-1, self._axis)) res = np.moveaxis(res, 0, self._axis) return Field(self._domain, res)