# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # # Copyright(C) 2013-2019 Max-Planck-Society # # NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik. import numpy as np from .. import utilities from ..domain_tuple import DomainTuple from ..field import Field from ..multi_field import MultiField from ..linearization import Linearization from ..sugar import makeDomain, makeOp from .linear_operator import LinearOperator from .operator import Operator from .sampling_enabler import SamplingEnabler from .sandwich_operator import SandwichOperator from .simple_linear_operators import VdotOperator class EnergyOperator(Operator): """Operator which has a scalar domain as target domain. It is intended as an objective function for field inference. Examples -------- - Information Hamiltonian, i.e. negative-log-probabilities. - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler divergence. """ _target = DomainTuple.scalar_domain() class SquaredNormOperator(EnergyOperator): """Computes the L2-norm of the output of an operator. Parameters ---------- domain : Domain, DomainTuple or tuple of Domain Domain of the operator in which the L2-norm shall be computed. """ def __init__(self, domain): self._domain = domain def apply(self, x): self._check_input(x) if isinstance(x, Linearization): val = Field.scalar(x.val.vdot(x.val)) jac = VdotOperator(2*x.val)(x.jac) return x.new(val, jac) return Field.scalar(x.vdot(x)) class QuadraticFormOperator(EnergyOperator): """Computes the L2-norm of a Field or MultiField with respect to a specific kernel given by `endo`. .. math :: E(f) = \\frac12 f^\\dagger \\text{endo}(f) Parameters ---------- endo : EndomorphicOperator Kernel of the quadratic form """ def __init__(self, endo): from .endomorphic_operator import EndomorphicOperator if not isinstance(endo, EndomorphicOperator): raise TypeError("op must be an EndomorphicOperator") self._op = endo self._domain = endo.domain def apply(self, x): self._check_input(x) if isinstance(x, Linearization): t1 = self._op(x.val) jac = VdotOperator(t1)(x.jac) val = Field.scalar(0.5*x.val.vdot(t1)) return x.new(val, jac) return Field.scalar(0.5*x.vdot(self._op(x))) class GaussianEnergy(EnergyOperator): """Computes a negative-log Gaussian. Represents up to constants in :math:`m`: .. math :: E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m), an information energy for a Gaussian distribution with mean m and covariance D. Parameters ---------- mean : Field Mean of the Gaussian. Default is 0. covariance : LinearOperator Covariance of the Gaussian. Default is the identity operator. domain : Domain, DomainTuple, tuple of Domain or MultiDomain Operator domain. By default it is inferred from `mean` or `covariance` if specified Note ---- At least one of the arguments has to be provided. """ def __init__(self, mean=None, covariance=None, domain=None): if mean is not None and not isinstance(mean, (Field, MultiField)): raise TypeError if covariance is not None and not isinstance(covariance, LinearOperator): raise TypeError self._domain = None if mean is not None: self._checkEquivalence(mean.domain) if covariance is not None: self._checkEquivalence(covariance.domain) if domain is not None: self._checkEquivalence(domain) if self._domain is None: raise ValueError("no domain given") self._mean = mean if covariance is None: self._op = SquaredNormOperator(self._domain).scale(0.5) else: self._op = QuadraticFormOperator(covariance.inverse) self._icov = None if covariance is None else covariance.inverse def _checkEquivalence(self, newdom): newdom = makeDomain(newdom) if self._domain is None: self._domain = newdom else: if self._domain != newdom: raise ValueError("domain mismatch") def apply(self, x): self._check_input(x) residual = x if self._mean is None else x - self._mean res = self._op(residual).real if not isinstance(x, Linearization) or not x.want_metric: return res metric = SandwichOperator.make(x.jac, self._icov) return res.add_metric(metric) class PoissonianEnergy(EnergyOperator): """Computes likelihood Hamiltonians of expected count field constrained by Poissonian count data. Represents up to an f-independent term :math:`log(d!)`: .. math :: E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f), where f is a :class:`Field` in data space with the expectation values for the counts. Parameters ---------- d : Field Data field with counts. Needs to have integer dtype and all field values need to be non-negative. """ def __init__(self, d): if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer): raise TypeError if np.any(d.local_data < 0): raise ValueError self._d = d self._domain = DomainTuple.make(d.domain) def apply(self, x): self._check_input(x) res = x.sum() tmp = (res.val.local_data if isinstance(res, Linearization) else res.local_data) # if we have no infinity here, we can continue with the calculation; # otherwise we know that the result must also be infinity if not np.any(np.isinf(tmp)): res = res - x.log().vdot(self._d) if not isinstance(x, Linearization): return Field.scalar(res) if not x.want_metric: return res metric = SandwichOperator.make(x.jac, makeOp(1./x.val)) return res.add_metric(metric) class InverseGammaLikelihood(EnergyOperator): """Computes the negative log-likelihood of the inverse gamma distribution. It negative log-pdf(x) is given by .. math :: \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i This is the likelihood for the variance :math:`x=S_k` given data :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have the covariance :math:`S_k`. Parameters ---------- beta : Field beta parameter of the inverse gamma distribution alpha : Scalar, Field, optional alpha parameter of the inverse gamma distribution """ def __init__(self, beta, alpha=-0.5): if not isinstance(beta, Field): raise TypeError self._beta = beta if np.isscalar(alpha): alpha = Field.from_local_data( beta.domain, np.full(beta.local_data.shape, alpha)) elif not isinstance(alpha, Field): raise TypeError self._alphap1 = alpha+1 self._domain = DomainTuple.make(beta.domain) def apply(self, x): self._check_input(x) res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta) if not isinstance(x, Linearization): return Field.scalar(res) if not x.want_metric: return res metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2))) return res.add_metric(metric) class BernoulliEnergy(EnergyOperator): """Computes likelihood energy of expected event frequency constrained by event data. .. math :: E(f) = -\\log \\text{Bernoulli}(d|f) = -d^\\dagger \\log f - (1-d)^\\dagger \\log(1-f), where f is a field defined on `d.domain` with the expected frequencies of events. Parameters ---------- d : Field Data field with events (1) or non-events (0). """ def __init__(self, d): if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer): raise TypeError if not np.all(np.logical_or(d.local_data == 0, d.local_data == 1)): raise ValueError self._d = d self._domain = DomainTuple.make(d.domain) def apply(self, x): self._check_input(x) v = -(x.log().vdot(self._d) + (1. - x).log().vdot(1. - self._d)) if not isinstance(x, Linearization): return Field.scalar(v) if not x.want_metric: return v met = makeOp(1./(x.val*(1. - x.val))) met = SandwichOperator.make(x.jac, met) return v.add_metric(met) class StandardHamiltonian(EnergyOperator): """Computes an information Hamiltonian in its standard form, i.e. with the prior being a Gaussian with unit covariance. Let the likelihood energy be :math:`E_{lh}`. Then this operator computes: .. math :: H(f) = 0.5 f^\\dagger f + E_{lh}(f): Other field priors can be represented via transformations of a white Gaussian field into a field with the desired prior probability structure. By implementing prior information this way, the field prior is represented by a generative model, from which NIFTy can draw samples and infer a field using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method. The metric of this operator can be used as covariance for drawing Gaussian samples. Parameters ---------- lh : EnergyOperator The likelihood energy. ic_samp : IterationController Tells an internal :class:`SamplingEnabler` which convergence criterion to use to draw Gaussian samples. See also -------- `Encoding prior knowledge in the structure of the likelihood`, Jakob Knollmüller, Torsten A. Ensslin, ``_ """ def __init__(self, lh, ic_samp=None): self._lh = lh self._prior = GaussianEnergy(domain=lh.domain) self._ic_samp = ic_samp self._domain = lh.domain def apply(self, x): self._check_input(x) if (self._ic_samp is None or not isinstance(x, Linearization) or not x.want_metric): return self._lh(x) + self._prior(x) else: lhx, prx = self._lh(x), self._prior(x) mtr = SamplingEnabler(lhx.metric, prx.metric, self._ic_samp) return (lhx + prx).add_metric(mtr) def __repr__(self): subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__())) subs += '\nPrior: Quadratic{}'.format(self._lh.domain.keys()) return 'StandardHamiltonian:\n' + utilities.indent(subs) class AveragedEnergy(EnergyOperator): """Averages an energy over samples. Parameters ---------- h: Hamiltonian The energy to be averaged. res_samples : iterable of Fields Set of residual sample points to be added to mean field for approximate estimation of the KL. Notes ----- - Having symmetrized residual samples, with both :math:`v_i` and :math:`-v_i` being present, ensures that the distribution mean is exactly represented. - :class:`AveragedEnergy(h)` approximates :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m` are drawn from a Gaussian distribution with covariance :math:`D`. """ def __init__(self, h, res_samples): self._h = h self._domain = h.domain self._res_samples = tuple(res_samples) def apply(self, x): self._check_input(x) mymap = map(lambda v: self._h(x + v), self._res_samples) return utilities.my_sum(mymap)*(1./len(self._res_samples))