# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
import abc
import numpy as np
from nifty.operators.endomorphic_operator import EndomorphicOperator
from nifty.spaces import RGSpace, GLSpace, HPSpace, PowerSpace
class SmoothingOperator(EndomorphicOperator):
""" NIFTY class for smoothing operators.
The NIFTy SmoothingOperator smooths Fields, with a given kernel length.
Fields which are not living over a PowerSpace are smoothed
via a gaussian convolution. Fields living over the PowerSpace are directly
smoothed.
Parameters
----------
domain : DomainObject, i.e. Space or FieldType
The Space on which the operator acts. The SmoothingOperator
can only live on one space or FieldType
sigma : float
Sets the length of the Gaussian convolution kernel
log_distances : boolean *optional*
States whether the convolution happens on the logarithmic grid or not
(default: False).
default_spaces : tuple of ints *optional*
Defines on which space(s) of a given field the Operator acts by
default (default: None).
Attributes
----------
domain : DomainObject, i.e. Space or FieldType
The domain on which the Operator's input Field lives.
target : tuple of DomainObjects, i.e. Spaces and FieldTypes
The domain in which the outcome of the operator lives. As the Operator
is endomorphic this is the same as its domain.
unitary : boolean
Indicates whether the Operator is unitary or not.
self_adjoint : boolean
Indicates whether the operator is self_adjoint or not.
sigma : float
Sets the length of the Gaussian convolution kernel
log_distances : boolean
States whether the convolution happens on the logarithmic grid or not.
Raises
------
ValueError
Raised if
* the given domain inherits more than one space. The
SmoothingOperator acts only on one Space.
Notes
-----
Examples
--------
>>> x = RGSpace(5)
>>> S = SmoothingOperator(x, sigma=1.)
>>> f = Field(x, val=[1,2,3,4,5])
>>> S.times(f).val
array([ 3., 3., 3., 3., 3.])
See Also
--------
DiagonalOperator, SmoothingOperator,
PropagatorOperator, ProjectionOperator,
ComposedOperator
"""
_fft_smoothing_spaces = [RGSpace,
GLSpace,
HPSpace]
_direct_smoothing_spaces = [PowerSpace]
def __new__(cls, domain, *args, **kwargs):
if cls is SmoothingOperator:
domain = cls._parse_domain(domain)
if len(domain) != 1:
raise ValueError("SmoothingOperator only accepts exactly one "
"space as input domain.")
if np.any([isinstance(domain[0], sp)
for sp in cls._fft_smoothing_spaces]):
from .fft_smoothing_operator import FFTSmoothingOperator
return super(SmoothingOperator, cls).__new__(
FFTSmoothingOperator, domain, *args, **kwargs)
elif np.any([isinstance(domain[0], sp)
for sp in cls._direct_smoothing_spaces]):
from .direct_smoothing_operator import DirectSmoothingOperator
return super(SmoothingOperator, cls).__new__(
DirectSmoothingOperator, domain, *args, **kwargs)
else:
raise NotImplementedError("For the given Space smoothing "
" is not available.")
else:
return super(SmoothingOperator, cls).__new__(cls,
domain,
*args,
**kwargs)
# ---Overwritten properties and methods---
def __init__(self, domain, sigma, log_distances=False,
default_spaces=None):
super(SmoothingOperator, self).__init__(default_spaces)
# # the _parse_domain is already done in the __new__ method
# self._domain = self._parse_domain(domain)
# if len(self.domain) != 1:
# raise ValueError("SmoothingOperator only accepts exactly one "
# "space as input domain.")
self._domain = self._parse_domain(domain)
self.sigma = sigma
self.log_distances = log_distances
def _inverse_times(self, x, spaces):
if self.sigma == 0:
return x.copy()
# the domain of the smoothing operator contains exactly one space.
# Hence, if spaces is None, but we passed LinearOperator's
# _check_input_compatibility, we know that x is also solely defined
# on that space
if spaces is None:
spaces = (0,)
return self._smooth(x, spaces, inverse=True)
def _times(self, x, spaces):
if self.sigma == 0:
return x.copy()
# the domain of the smoothing operator contains exactly one space.
# Hence, if spaces is None, but we passed LinearOperator's
# _check_input_compatibility, we know that x is also solely defined
# on that space
if spaces is None:
spaces = (0,)
return self._smooth(x, spaces, inverse=False)
# ---Mandatory properties and methods---
@property
def domain(self):
return self._domain
@property
def self_adjoint(self):
return True
@property
def unitary(self):
return False
# ---Added properties and methods---
@property
def sigma(self):
return self._sigma
@sigma.setter
def sigma(self, sigma):
self._sigma = np.float(sigma)
@property
def log_distances(self):
return self._log_distances
@log_distances.setter
def log_distances(self, log_distances):
self._log_distances = bool(log_distances)
@abc.abstractmethod
def _smooth(self, x, spaces, inverse):
raise NotImplementedError