import nifty2go as ift import numpy as np if __name__ == "__main__": # Setting up parameters L = 2. # Total side-length of the domain N_pixels = 512 # Grid resolution (pixels per axis) correlation_length_scale = 1. # Typical distance over which the field is # correlated fluctuation_scale = 2. # Variance of field in position space response_sigma = 0.05 # Smoothing length of response signal_to_noise = 1.5 # The signal to noise ratio np.random.seed(43) # Fixing the random seed def power_spectrum(k): # Defining the power spectrum a = 4 * correlation_length_scale * fluctuation_scale**2 return a / (1 + (k * correlation_length_scale)**2) ** 2 signal_space = ift.RGSpace([N_pixels, N_pixels], distances=L/N_pixels) harmonic_space = signal_space.get_default_codomain() fft = ift.FFTOperator(harmonic_space, target=signal_space) power_space = ift.PowerSpace( harmonic_space, binbounds=ift.PowerSpace.useful_binbounds( harmonic_space, logarithmic=True)) # Creating the mock signal S = ift.create_power_operator(harmonic_space, power_spectrum=power_spectrum) mock_power = ift.PS_field(power_space, power_spectrum) mock_signal = fft(ift.power_synthesize(mock_power, real_signal=True)) # Setting up an exemplary response mask = np.ones(signal_space.shape) N10 = int(N_pixels/10) mask[N10*5:N10*9, N10*5:N10*9] = 0. mask = ift.Field(signal_space, ift.dobj.from_global_data(mask)) R = ift.ResponseOperator(signal_space, sigma=(response_sigma,), exposure=(mask,)) data_domain = R.target[0] R_harmonic = ift.ComposedOperator([fft, R]) # Setting up the noise covariance and drawing a random noise realization ndiag = ift.Field.full(data_domain, mock_signal.var()/signal_to_noise) N = ift.DiagonalOperator(ndiag.weight(1)) noise = ift.Field.from_random( domain=data_domain, random_type='normal', std=mock_signal.std()/np.sqrt(signal_to_noise), mean=0) data = R(mock_signal) + noise # Wiener filter j = R_harmonic.adjoint_times(N.inverse_times(data)) ctrl = ift.GradientNormController(verbose=True, tol_abs_gradnorm=0.1) inverter = ift.ConjugateGradient(controller=ctrl) wiener_curvature = ift.library.WienerFilterCurvature( S=S, N=N, R=R_harmonic, inverter=inverter) m_k = wiener_curvature.inverse_times(j) m = fft(m_k) # Probing the uncertainty class Proby(ift.DiagonalProberMixin, ift.Prober): pass proby = Proby(signal_space, probe_count=1, ncpu=1) proby(lambda z: fft(wiener_curvature.inverse_times(fft.inverse_times(z)))) sm = ift.FFTSmoothingOperator(signal_space, sigma=0.03) variance = ift.sqrt(sm(proby.diagonal.weight(-1))) # Plotting ift.plotting.plot(variance, name="uncertainty.png", xlabel='Pixel index', ylabel='Pixel index') ift.plotting.plot(mock_signal, name="mock_signal.png", xlabel='Pixel index', ylabel='Pixel index') ift.plotting.plot(ift.Field(signal_space, val=data.val), name="data.png", xlabel='Pixel index', ylabel='Pixel index') ift.plotting.plot(m, name="map.png", xlabel='Pixel index', ylabel='Pixel index')