import numpy as np import nifty4 as ift import numericalunits as nu if __name__ == "__main__": # In MPI mode, the random seed for numericalunits must be set by hand #nu.reset_units(43) dimensionality = 2 np.random.seed(43) # Setting up variable parameters # Typical distance over which the field is correlated correlation_length = 0.05*nu.m # sigma of field in position space sqrt(<|s_x|^2>) field_sigma = 2. * nu.K # smoothing length of response response_sigma = 0.03*nu.m # The signal to noise ratio signal_to_noise = 1 # note that field_variance**2 = a*k_0/4. for this analytic form of power # spectrum def power_spectrum(k): #RL FIXME: signal_amplitude is not how much signal varies cldim = correlation_length**(2*dimensionality) a = 4/(2*np.pi) * cldim * field_sigma**2 # to be integrated over spherical shells later on return a / (1 + (k*correlation_length)**(2*dimensionality)) ** 2 # Setting up the geometry # Total side-length of the domain L = 2.*nu.m # Grid resolution (pixels per axis) N_pixels = 512 shape = [N_pixels]*dimensionality signal_space = ift.RGSpace(shape, distances=L/N_pixels) harmonic_space = signal_space.get_default_codomain() ht = ift.HarmonicTransformOperator(harmonic_space, target=signal_space) power_space = ift.PowerSpace(harmonic_space) # Creating the mock data S = ift.create_power_operator(harmonic_space, power_spectrum=power_spectrum) np.random.seed(43) mock_power = ift.PS_field(power_space, power_spectrum) mock_signal = ift.power_synthesize(mock_power, real_signal=True) sensitivity = (1./nu.m)**dimensionality/nu.K R = ift.GeometryRemover(signal_space) R = R*ift.ScalingOperator(sensitivity, signal_space) R = R*ht R = R * ift.create_harmonic_smoothing_operator((harmonic_space,),0,response_sigma) data_domain = R.target[0] noiseless_data = R(mock_signal) noise_amplitude = noiseless_data.val.std()/signal_to_noise N = ift.DiagonalOperator( ift.Field.full(data_domain, noise_amplitude**2)) noise = ift.Field.from_random( domain=data_domain, random_type='normal', std=noise_amplitude, mean=0) data = noiseless_data + noise # Wiener filter j = R.adjoint_times(N.inverse_times(data)) ctrl = ift.GradientNormController( name="inverter", tol_abs_gradnorm=1e-5/(nu.K*(nu.m**dimensionality))) inverter = ift.ConjugateGradient(controller=ctrl) wiener_curvature = ift.library.WienerFilterCurvature( S=S, N=N, R=R, inverter=inverter) m = wiener_curvature.inverse_times(j) m_s = ht(m) sspace2 = ift.RGSpace(shape, distances=L/N_pixels/nu.m) ift.plot(ift.Field(sspace2, ht(mock_signal).val)/nu.K, name="mock_signal.png") #data = ift.dobj.to_global_data(data.val).reshape(sspace2.shape) #data = ift.Field(sspace2, val=ift.dobj.from_global_data(data)) ift.plot(ift.Field(sspace2, val=data.val), name="data.png") print "msig",np.min(ht(mock_signal).val)/nu.K, np.max(ht(mock_signal).val)/nu.K print "map",np.min(m_s.val)/nu.K, np.max(m_s.val)/nu.K ift.plot(ift.Field(sspace2, m_s.val)/nu.K, name="map.png")