## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage:
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see .
"""
.. __ ____ __
.. /__/ / _/ / /_
.. __ ___ __ / /_ / _/ __ __
.. / _ | / / / _/ / / / / / /
.. / / / / / / / / / /_ / /_/ /
.. /__/ /__/ /__/ /__/ \___/ \___ / demo
.. /______/
NIFTY demo applying a Wiener filter using conjugate gradient.
"""
from __future__ import division
import matplotlib as mpl
mpl.use('Agg')
import gc
#import imp
#nifty = imp.load_module('nifty', None,
# '/home/steininger/Downloads/nifty', ('','',5))
from nifty import * # version 0.8.0
if __name__ == "__main__":
about.warnings.off()
# some signal space; e.g., a two-dimensional regular grid
shape = [1024, 1024]
x_space = rg_space(shape)
#y_space = point_space(1280*1280)
#x_space = hp_space(32)
#x_space = gl_space(800)
k_space = x_space.get_codomain() # get conjugate space
# some power spectrum
power = (lambda k: 42 / (k + 1) ** 4)
S = power_operator(k_space, codomain=x_space, spec=power) # define signal covariance
s = S.get_random_field(domain=x_space) # generate signal
#my_mask = x_space.cast(1)
#stretch = 0.6
#my_mask[shape[0]/2*stretch:shape[0]/2/stretch, shape[1]/2*stretch:shape[1]/2/stretch] = 0
my_mask = 1
R = response_operator(x_space, sigma=0.01, mask=my_mask, assign=None) # define response
R = response_operator(x_space, assign=None) #
#R = identity_operator(x_space)
d_space = R.target # get data space
# some noise variance; e.g., signal-to-noise ratio of 1
N = diagonal_operator(d_space, diag=s.var(), bare=True) # define noise covariance
n = N.get_random_field(domain=d_space) # generate noise
d = R(s) + n # compute data
j = R.adjoint_times(N.inverse_times(d)) # define information source
D = propagator_operator(S=S, N=N, R=R) # define information propagator
#m = D(j, W=S, tol=1E-8, limii=100, note=True)
#m = D(j, tol=1E-8, limii=20, note=True, force=True)
ident = identity(x_space)
#xi = field(x_space, random='gau', target=k_space)
m = D(j, W=S, tol=1E-8, limii=100, note=True)
#temp_result = (D.inverse_times(m)-xi)
n_power = x_space.enforce_power(s.var()/np.prod(shape))
s_power = S.get_power()
s.plot(title="signal", save = 'plot_s.png')
s.plot(title="signal power", power=True, other=power,
mono=False, save = 'power_plot_s.png', nbin=1000, log=True,
vmax = 100, vmin=10e-7)
d_ = field(x_space, val=d.val, target=k_space)
d_.plot(title="data", vmin=s.min(), vmax=s.max(), save = 'plot_d.png')
n_ = field(x_space, val=n.val, target=k_space)
n_.plot(title="data", vmin=s.min(), vmax=s.max(), save = 'plot_n.png')
m.plot(title="reconstructed map", vmin=s.min(), vmax=s.max(), save = 'plot_m.png')
m.plot(title="reconstructed power", power=True, other=(n_power, s_power),
save = 'power_plot_m.png', vmin=0.001, vmax=10, mono=False)
#