## NIFTY (Numerical Information Field Theory) has been developed at the ## Max-Planck-Institute for Astrophysics. ## ## Copyright (C) 2013 Max-Planck-Society ## ## Author: Marco Selig ## Project homepage: ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ## See the GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## TODO: cythonize from __future__ import division import numpy as np def draw_vector_nd(axes,dgrid,ps,symtype=0,fourier=False,zerocentered=False,kpack=None): """ Draws a n-dimensional field on a regular grid from a given power spectrum. The grid parameters need to be specified, together with a couple of global options explained below. The dimensionality of the field is determined automatically. Parameters ---------- axes : ndarray An array with the length of each axis. dgrid : ndarray An array with the pixel length of each axis. ps : ndarray The power spectrum as a function of Fourier modes. symtype : int {0,1,2} : *optional* Whether the output should be real valued (0), complex-hermitian (1) or complex without symmetry (2). (default=0) fourier : bool : *optional* Whether the output should be in Fourier space or not (default=False). zerocentered : bool : *optional* Whether the output array should be zerocentered, i.e. starting with negative Fourier modes going over the zero mode to positive modes, or not zerocentered, where zero, positive and negative modes are simpy ordered consecutively. Returns ------- field : ndarray The drawn random field. """ if(kpack is None): kdict = np.fft.fftshift(nkdict(axes,dgrid,fourier)) klength = nklength(kdict) else: kdict = kpack[1][np.fft.ifftshift(kpack[0],axes=shiftaxes(zerocentered,st_to_zero_mode=False))] klength = kpack[1] #output is in position space if(not fourier): #output is real-valued if(symtype==0): vector = drawherm(klength,kdict,ps) if(np.any(zerocentered==True)): return np.real(np.fft.fftshift(np.fft.ifftn(vector),axes=shiftaxes(zerocentered))) else: return np.real(np.fft.ifftn(vector)) #output is complex with hermitian symmetry elif(symtype==1): vector = drawwild(klength,kdict,ps,real_corr=2) if(np.any(zerocentered==True)): return np.fft.fftshift(np.fft.ifftn(np.real(vector)),axes=shiftaxes(zerocentered)) else: return np.fft.ifftn(np.real(vector)) #output is complex without symmetry else: vector = drawwild(klength,kdict,ps) if(np.any(zerocentered==True)): return np.fft.fftshift(np.fft.ifftn(vector),axes=shiftaxes(zerocentered)) else: return np.fft.ifftn(vector) #output is in fourier space else: #output is real-valued if(symtype==0): vector = drawwild(klength,kdict,ps,real_corr=2) if np.any(zerocentered == True): return np.real(np.fft.fftshift(vector,axes=shiftaxes(zerocentered))) else: return np.real(vector) #output is complex with hermitian symmetry elif(symtype==1): vector = drawherm(klength,kdict,ps) if(np.any(zerocentered==True)): return np.fft.fftshift(vector,axes=shiftaxes(zerocentered)) else: return vector #output is complex without symmetry else: vector = drawwild(klength,kdict,ps) if(np.any(zerocentered==True)): return np.fft.fftshift(vector,axes=shiftaxes(zerocentered)) else: return vector #def calc_ps(field,axes,dgrid,zerocentered=False,fourier=False): # # """ # Calculates the power spectrum of a given field assuming that the field # is statistically homogenous and isotropic. # # Parameters # ---------- # field : ndarray # The input field from which the power spectrum should be determined. # # axes : ndarray # An array with the length of each axis. # # dgrid : ndarray # An array with the pixel length of each axis. # # zerocentered : bool : *optional* # Whether the output array should be zerocentered, i.e. starting with # negative Fourier modes going over the zero mode to positive modes, # or not zerocentered, where zero, positive and negative modes are # simpy ordered consecutively. # # fourier : bool : *optional* # Whether the output should be in Fourier space or not # (default=False). # # """ # # ## field absolutes # if(not fourier): # foufield = np.fft.fftshift(np.fft.fftn(field)) # elif(np.any(zerocentered==False)): # foufield = np.fft.fftshift(field, axes=shiftaxes(zerocentered,st_to_zero_mode=True)) # else: # foufield = field # fieldabs = np.abs(foufield)**2 # # kdict = nkdict(axes,dgrid,fourier) # klength = nklength(kdict) # # ## power spectrum # ps = np.zeros(klength.size) # rho = np.zeros(klength.size) # for ii in np.ndindex(kdict.shape): # position = np.searchsorted(klength,kdict[ii]) # rho[position] += 1 # ps[position] += fieldabs[ii] # ps = np.divide(ps,rho) # return ps def calc_ps_fast(field,axes,dgrid,zerocentered=False,fourier=False,pindex=None,kindex=None,rho=None): """ Calculates the power spectrum of a given field faster assuming that the field is statistically homogenous and isotropic. Parameters ---------- field : ndarray The input field from which the power spectrum should be determined. axes : ndarray An array with the length of each axis. dgrid : ndarray An array with the pixel length of each axis. zerocentered : bool : *optional* Whether the output array should be zerocentered, i.e. starting with negative Fourier modes going over the zero mode to positive modes, or not zerocentered, where zero, positive and negative modes are simpy ordered consecutively. fourier : bool : *optional* Whether the output should be in Fourier space or not (default=False). pindex : ndarray Index of the Fourier grid points in a numpy.ndarray ordered following the zerocentered flag (default=None). kindex : ndarray Array of all k-vector lengths (default=None). rho : ndarray Degeneracy of the Fourier grid, indicating how many k-vectors in Fourier space have the same length (default=None). """ ## field absolutes if(not fourier): foufield = np.fft.fftshift(np.fft.fftn(field)) elif(np.any(zerocentered==False)): foufield = np.fft.fftshift(field, axes=shiftaxes(zerocentered,st_to_zero_mode=True)) else: foufield = field fieldabs = np.abs(foufield)**2 if(rho is None): if(pindex is None): ## kdict kdict = nkdict(axes,dgrid,fourier) ## klength if(kindex is None): klength = nklength(kdict) else: klength = kindex ## power spectrum ps = np.zeros(klength.size) rho = np.zeros(klength.size) for ii in np.ndindex(kdict.shape): position = np.searchsorted(klength,kdict[ii]) ps[position] += fieldabs[ii] rho[position] += 1 else: ## power spectrum ps = np.zeros(len(set(pindex.flatten()))) rho = np.zeros(ps.size) for ii in np.ndindex(pindex.shape): ps[pindex[ii]] += fieldabs[ii] rho[pindex[ii]] += 1 elif(pindex is None): ## kdict kdict = nkdict(axes,dgrid,fourier) ## klength if(kindex is None): klength = nklength(kdict) else: klength = kindex ## power spectrum ps = np.zeros(klength.size) for ii in np.ndindex(kdict.shape): position = np.searchsorted(klength,kdict[ii]) ps[position] += fieldabs[ii] else: ## power spectrum ps = np.zeros(rho.size) for ii in np.ndindex(pindex.shape): ps[pindex[ii]] += fieldabs[ii] ps = np.divide(ps,rho) return ps def get_power_index(axes,dgrid,zerocentered,irred=False,fourier=True): """ Returns the index of the Fourier grid points in a numpy array, ordered following the zerocentered flag. Parameters ---------- axes : ndarray An array with the length of each axis. dgrid : ndarray An array with the pixel length of each axis. zerocentered : bool Whether the output array should be zerocentered, i.e. starting with negative Fourier modes going over the zero mode to positive modes, or not zerocentered, where zero, positive and negative modes are simpy ordered consecutively. irred : bool : *optional* If True, the function returns an array of all k-vector lengths and their degeneracy factors. If False, just the power index array is returned. fourier : bool : *optional* Whether the output should be in Fourier space or not (default=False). Returns ------- index or {klength, rho} : scalar or list Returns either an array of all k-vector lengths and their degeneracy factors or just the power index array depending on the flag irred. """ ## kdict, klength if(np.any(zerocentered==False)): kdict = np.fft.fftshift(nkdict(axes,dgrid,fourier),axes=shiftaxes(zerocentered,st_to_zero_mode=True)) else: kdict = nkdict(axes,dgrid,fourier) klength = nklength(kdict) ## output if(irred): rho = np.zeros(klength.shape,dtype=np.int) for ii in np.ndindex(kdict.shape): rho[np.searchsorted(klength,kdict[ii])] += 1 return klength,rho else: ind = np.empty(axes,dtype=np.int) for ii in np.ndindex(kdict.shape): ind[ii] = np.searchsorted(klength,kdict[ii]) return ind def get_power_indices(axes,dgrid,zerocentered,fourier=True): """ Returns the index of the Fourier grid points in a numpy array, ordered following the zerocentered flag. Parameters ---------- axes : ndarray An array with the length of each axis. dgrid : ndarray An array with the pixel length of each axis. zerocentered : bool Whether the output array should be zerocentered, i.e. starting with negative Fourier modes going over the zero mode to positive modes, or not zerocentered, where zero, positive and negative modes are simpy ordered consecutively. irred : bool : *optional* If True, the function returns an array of all k-vector lengths and their degeneracy factors. If False, just the power index array is returned. fourier : bool : *optional* Whether the output should be in Fourier space or not (default=False). Returns ------- index, klength, rho : ndarrays Returns the power index array, an array of all k-vector lengths and their degeneracy factors. """ ## kdict, klength if(np.any(zerocentered==False)): kdict = np.fft.fftshift(nkdict(axes,dgrid,fourier),axes=shiftaxes(zerocentered,st_to_zero_mode=True)) else: kdict = nkdict(axes,dgrid,fourier) klength = nklength(kdict) ## output ind = np.empty(axes,dtype=np.int) rho = np.zeros(klength.shape,dtype=np.int) for ii in np.ndindex(kdict.shape): ind[ii] = np.searchsorted(klength,kdict[ii]) rho[ind[ii]] += 1 return ind,klength,rho def bin_power_indices(pindex,kindex,rho,log=False,nbin=None,binbounds=None): """ Returns the (re)binned power indices associated with the Fourier grid. Parameters ---------- pindex : ndarray Index of the Fourier grid points in a numpy.ndarray ordered following the zerocentered flag (default=None). kindex : ndarray Array of all k-vector lengths (default=None). rho : ndarray Degeneracy of the Fourier grid, indicating how many k-vectors in Fourier space have the same length (default=None). log : bool Flag specifying if the binning is performed on logarithmic scale (default: False). nbin : integer Number of used bins (default: None). binbounds : {list, array} Array-like inner boundaries of the used bins (default: None). Returns ------- pindex, kindex, rho : ndarrays The (re)binned power indices. """ ## boundaries if(binbounds is not None): binbounds = np.sort(binbounds) ## equal binning else: if(log is None): log = False if(log): k = np.r_[0,np.log(kindex[1:])] else: k = kindex dk = np.max(k[2:]-k[1:-1]) ## minimal dk if(nbin is None): nbin = int((k[-1]-0.5*(k[2]+k[1]))/dk-0.5) ## maximal nbin else: nbin = min(int(nbin),int((k[-1]-0.5*(k[2]+k[1]))/dk+2.5)) dk = (k[-1]-0.5*(k[2]+k[1]))/(nbin-2.5) binbounds = np.r_[0.5*(3*k[1]-k[2]),0.5*(k[1]+k[2])+dk*np.arange(nbin-2)] if(log): binbounds = np.exp(binbounds) ## reordering reorder = np.searchsorted(binbounds,kindex) rho_ = np.zeros(len(binbounds)+1,dtype=rho.dtype) kindex_ = np.empty(len(binbounds)+1,dtype=kindex.dtype) for ii in range(len(reorder)): if(rho_[reorder[ii]]==0): kindex_[reorder[ii]] = kindex[ii] rho_[reorder[ii]] += rho[ii] else: kindex_[reorder[ii]] = (kindex_[reorder[ii]]*rho_[reorder[ii]]+kindex[ii]*rho[ii])/(rho_[reorder[ii]]+rho[ii]) rho_[reorder[ii]] += rho[ii] return reorder[pindex],kindex_,rho_ def nhermitianize(field,zerocentered): """ Hermitianizes an arbitrary n-dimensional field. Becomes relatively slow for large n. Parameters ---------- field : ndarray The input field that should be hermitianized. zerocentered : bool Whether the output array should be zerocentered, i.e. starting with negative Fourier modes going over the zero mode to positive modes, or not zerocentered, where zero, positive and negative modes are simpy ordered consecutively. Returns ------- hermfield : ndarray The hermitianized field. """ ## shift zerocentered axes if(np.any(zerocentered==True)): field = np.fft.fftshift(field, axes=shiftaxes(zerocentered)) # for index in np.ndenumerate(field): # negind = tuple(-np.array(index[0])) # field[negind] = np.conjugate(index[1]) # if(field[negind]==field[index[0]]): # field[index[0]] = np.abs(index[1])*(np.sign(index[1].real)+(np.sign(index[1].real)==0)*np.sign(index[1].imag)).astype(np.int) subshape = np.array(field.shape,dtype=np.int) ## == axes maxindex = subshape//2 subshape[np.argmax(subshape)] = subshape[np.argmax(subshape)]//2+1 ## ~half larges axis for ii in np.ndindex(tuple(subshape)): negii = tuple(-np.array(ii)) field[negii] = np.conjugate(field[ii]) for ii in np.ndindex((2,)*maxindex.size): index = tuple(ii*maxindex) field[index] = np.abs(field[index])*(np.sign(field[index].real)+(np.sign(field[index].real)==0)*-np.sign(field[index].imag)).astype(np.int) ## minus since overwritten before ## reshift zerocentered axes if(np.any(zerocentered==True)): field = np.fft.fftshift(field,axes=shiftaxes(zerocentered)) return field def nhermitianize_fast(field,zerocentered,special=False): """ Hermitianizes an arbitrary n-dimensional field faster. Still becomes comparably slow for large n. Parameters ---------- field : ndarray The input field that should be hermitianized. zerocentered : bool Whether the output array should be zerocentered, i.e. starting with negative Fourier modes going over the zero mode to positive modes, or not zerocentered, where zero, positive and negative modes are simpy ordered consecutively. special : bool, *optional* Must be True for random fields drawn from Gaussian or pm1 distributions. Returns ------- hermfield : ndarray The hermitianized field. """ ## shift zerocentered axes if(np.any(zerocentered==True)): field = np.fft.fftshift(field, axes=shiftaxes(zerocentered)) dummy = np.conjugate(field) ## mirror conjugate field for ii in range(field.ndim): dummy = np.swapaxes(dummy,0,ii) dummy = np.flipud(dummy) dummy = np.roll(dummy,1,axis=0) dummy = np.swapaxes(dummy,0,ii) if(special): ## special normalisation for certain random fields field = np.sqrt(0.5)*(field+dummy) maxindex = np.array(field.shape,dtype=np.int)//2 for ii in np.ndindex((2,)*maxindex.size): index = tuple(ii*maxindex) field[index] *= np.sqrt(0.5) else: ## regular case field = 0.5*(field+dummy) ## reshift zerocentered axes if(np.any(zerocentered==True)): field = np.fft.fftshift(field,axes=shiftaxes(zerocentered)) return field def random_hermitian_pm1(datatype,zerocentered,shape): """ Draws a set of hermitianized random, complex pm1 numbers. """ field = np.random.randint(4,high=None,size=np.prod(shape,axis=0,dtype=np.int,out=None)).reshape(shape,order='C') dummy = np.copy(field) ## mirror field for ii in range(field.ndim): dummy = np.swapaxes(dummy,0,ii) dummy = np.flipud(dummy) dummy = np.roll(dummy,1,axis=0) dummy = np.swapaxes(dummy,0,ii) field = (field+dummy+2*(field>dummy)*((field+dummy)%2))%4 ## wicked magic x = np.array([1+0j,0+1j,-1+0j,0-1j],dtype=datatype)[field] ## (re)shift zerocentered axes if(np.any(zerocentered==True)): field = np.fft.fftshift(field,axes=shiftaxes(zerocentered)) return x #----------------------------------------------------------------------------- # Auxiliary functions #----------------------------------------------------------------------------- def shiftaxes(zerocentered,st_to_zero_mode=False): """ Shifts the axes in a special way needed for some functions """ axes = [] for ii in range(len(zerocentered)): if(st_to_zero_mode==False)and(zerocentered[ii]): axes += [ii] if(st_to_zero_mode==True)and(not zerocentered[ii]): axes += [ii] return axes def nkdict(axes,dgrid,fourier=True): """ Calculates an n-dimensional array with its entries being the lengths of the k-vectors from the zero point of the Fourier grid. """ if(fourier): dk = dgrid else: dk = np.array([1/axes[i]/dgrid[i] for i in range(len(axes))]) kdict = np.empty(axes) for ii in np.ndindex(kdict.shape): kdict[ii] = np.sqrt(np.sum(((ii-axes//2)*dk)**2)) return kdict def nklength(kdict): return np.sort(list(set(kdict.flatten()))) #def drawherm(vector,klength,kdict,ps): ## vector = np.zeros(kdict.shape,dtype=np.complex) # for ii in np.ndindex(vector.shape): # if(vector[ii]==np.complex(0.,0.)): # vector[ii] = np.sqrt(0.5*ps[np.searchsorted(klength,kdict[ii])])*np.complex(np.random.normal(0.,1.),np.random.normal(0.,1.)) # negii = tuple(-np.array(ii)) # vector[negii] = np.conjugate(vector[ii]) # if(vector[negii]==vector[ii]): # vector[ii] = np.float(np.sqrt(ps[klength==kdict[ii]]))*np.random.normal(0.,1.) # return vector def drawherm(klength,kdict,ps): """ Draws a hermitian random field from a Gaussian distribution. """ # vector = np.zeros(kdict.shape,dtype='complex') # for ii in np.ndindex(vector.shape): # if(vector[ii]==np.complex(0.,0.)): # vector[ii] = np.sqrt(0.5*ps[np.searchsorted(klength,kdict[ii])])*np.complex(np.random.normal(0.,1.),np.random.normal(0.,1.)) # negii = tuple(-np.array(ii)) # vector[negii] = np.conjugate(vector[ii]) # if(vector[negii]==vector[ii]): # vector[ii] = np.float(np.sqrt(ps[np.searchsorted(klength,kdict[ii])]))*np.random.normal(0.,1.) # return vector vec = np.random.normal(loc=0,scale=1,size=kdict.size).reshape(kdict.shape) vec = np.fft.fftn(vec)/np.sqrt(np.prod(kdict.shape)) for ii in np.ndindex(kdict.shape): vec[ii] *= np.sqrt(ps[np.searchsorted(klength,kdict[ii])]) return vec #def drawwild(vector,klength,kdict,ps,real_corr=1): ## vector = np.zeros(kdict.shape,dtype=np.complex) # for ii in np.ndindex(vector.shape): # vector[ii] = np.sqrt(real_corr*0.5*ps[klength==kdict[ii]])*np.complex(np.random.normal(0.,1.),np.random.normal(0.,1.)) # return vector def drawwild(klength,kdict,ps,real_corr=1): """ Draws a field of arbitrary symmetry from a Gaussian distribution. """ vec = np.empty(kdict.size,dtype=np.complex) vec.real = np.random.normal(loc=0,scale=np.sqrt(real_corr*0.5),size=kdict.size) vec.imag = np.random.normal(loc=0,scale=np.sqrt(real_corr*0.5),size=kdict.size) vec = vec.reshape(kdict.shape) for ii in np.ndindex(kdict.shape): vec[ii] *= np.sqrt(ps[np.searchsorted(klength,kdict[ii])]) return vec