## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage:
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see .
## TODO: cythonize
from __future__ import division
import numpy as np
def draw_vector_nd(axes,dgrid,ps,symtype=0,fourier=False,zerocentered=False,kpack=None):
"""
Draws a n-dimensional field on a regular grid from a given power
spectrum. The grid parameters need to be specified, together with a
couple of global options explained below. The dimensionality of the
field is determined automatically.
Parameters
----------
axes : ndarray
An array with the length of each axis.
dgrid : ndarray
An array with the pixel length of each axis.
ps : ndarray
The power spectrum as a function of Fourier modes.
symtype : int {0,1,2} : *optional*
Whether the output should be real valued (0), complex-hermitian (1)
or complex without symmetry (2). (default=0)
fourier : bool : *optional*
Whether the output should be in Fourier space or not
(default=False).
zerocentered : bool : *optional*
Whether the output array should be zerocentered, i.e. starting with
negative Fourier modes going over the zero mode to positive modes,
or not zerocentered, where zero, positive and negative modes are
simpy ordered consecutively.
Returns
-------
field : ndarray
The drawn random field.
"""
if(kpack is None):
kdict = np.fft.fftshift(nkdict(axes,dgrid,fourier))
klength = nklength(kdict)
else:
kdict = kpack[1][np.fft.ifftshift(kpack[0],axes=shiftaxes(zerocentered,st_to_zero_mode=False))]
klength = kpack[1]
#output is in position space
if(not fourier):
#output is real-valued
if(symtype==0):
vector = drawherm(klength,kdict,ps)
if(np.any(zerocentered==True)):
return np.real(np.fft.fftshift(np.fft.ifftn(vector),axes=shiftaxes(zerocentered)))
else:
return np.real(np.fft.ifftn(vector))
#output is complex with hermitian symmetry
elif(symtype==1):
vector = drawwild(klength,kdict,ps,real_corr=2)
if(np.any(zerocentered==True)):
return np.fft.fftshift(np.fft.ifftn(np.real(vector)),axes=shiftaxes(zerocentered))
else:
return np.fft.ifftn(np.real(vector))
#output is complex without symmetry
else:
vector = drawwild(klength,kdict,ps)
if(np.any(zerocentered==True)):
return np.fft.fftshift(np.fft.ifftn(vector),axes=shiftaxes(zerocentered))
else:
return np.fft.ifftn(vector)
#output is in fourier space
else:
#output is real-valued
if(symtype==0):
vector = drawwild(klength,kdict,ps,real_corr=2)
if np.any(zerocentered == True):
return np.real(np.fft.fftshift(vector,axes=shiftaxes(zerocentered)))
else:
return np.real(vector)
#output is complex with hermitian symmetry
elif(symtype==1):
vector = drawherm(klength,kdict,ps)
if(np.any(zerocentered==True)):
return np.fft.fftshift(vector,axes=shiftaxes(zerocentered))
else:
return vector
#output is complex without symmetry
else:
vector = drawwild(klength,kdict,ps)
if(np.any(zerocentered==True)):
return np.fft.fftshift(vector,axes=shiftaxes(zerocentered))
else:
return vector
#def calc_ps(field,axes,dgrid,zerocentered=False,fourier=False):
#
# """
# Calculates the power spectrum of a given field assuming that the field
# is statistically homogenous and isotropic.
#
# Parameters
# ----------
# field : ndarray
# The input field from which the power spectrum should be determined.
#
# axes : ndarray
# An array with the length of each axis.
#
# dgrid : ndarray
# An array with the pixel length of each axis.
#
# zerocentered : bool : *optional*
# Whether the output array should be zerocentered, i.e. starting with
# negative Fourier modes going over the zero mode to positive modes,
# or not zerocentered, where zero, positive and negative modes are
# simpy ordered consecutively.
#
# fourier : bool : *optional*
# Whether the output should be in Fourier space or not
# (default=False).
#
# """
#
# ## field absolutes
# if(not fourier):
# foufield = np.fft.fftshift(np.fft.fftn(field))
# elif(np.any(zerocentered==False)):
# foufield = np.fft.fftshift(field, axes=shiftaxes(zerocentered,st_to_zero_mode=True))
# else:
# foufield = field
# fieldabs = np.abs(foufield)**2
#
# kdict = nkdict(axes,dgrid,fourier)
# klength = nklength(kdict)
#
# ## power spectrum
# ps = np.zeros(klength.size)
# rho = np.zeros(klength.size)
# for ii in np.ndindex(kdict.shape):
# position = np.searchsorted(klength,kdict[ii])
# rho[position] += 1
# ps[position] += fieldabs[ii]
# ps = np.divide(ps,rho)
# return ps
def calc_ps_fast(field,axes,dgrid,zerocentered=False,fourier=False,pindex=None,kindex=None,rho=None):
"""
Calculates the power spectrum of a given field faster assuming that the
field is statistically homogenous and isotropic.
Parameters
----------
field : ndarray
The input field from which the power spectrum should be determined.
axes : ndarray
An array with the length of each axis.
dgrid : ndarray
An array with the pixel length of each axis.
zerocentered : bool : *optional*
Whether the output array should be zerocentered, i.e. starting with
negative Fourier modes going over the zero mode to positive modes,
or not zerocentered, where zero, positive and negative modes are
simpy ordered consecutively.
fourier : bool : *optional*
Whether the output should be in Fourier space or not
(default=False).
pindex : ndarray
Index of the Fourier grid points in a numpy.ndarray ordered
following the zerocentered flag (default=None).
kindex : ndarray
Array of all k-vector lengths (default=None).
rho : ndarray
Degeneracy of the Fourier grid, indicating how many k-vectors in
Fourier space have the same length (default=None).
"""
## field absolutes
if(not fourier):
foufield = np.fft.fftshift(np.fft.fftn(field))
elif(np.any(zerocentered==False)):
foufield = np.fft.fftshift(field, axes=shiftaxes(zerocentered,st_to_zero_mode=True))
else:
foufield = field
fieldabs = np.abs(foufield)**2
if(rho is None):
if(pindex is None):
## kdict
kdict = nkdict(axes,dgrid,fourier)
## klength
if(kindex is None):
klength = nklength(kdict)
else:
klength = kindex
## power spectrum
ps = np.zeros(klength.size)
rho = np.zeros(klength.size)
for ii in np.ndindex(kdict.shape):
position = np.searchsorted(klength,kdict[ii])
ps[position] += fieldabs[ii]
rho[position] += 1
else:
## power spectrum
ps = np.zeros(len(set(pindex.flatten())))
rho = np.zeros(ps.size)
for ii in np.ndindex(pindex.shape):
ps[pindex[ii]] += fieldabs[ii]
rho[pindex[ii]] += 1
elif(pindex is None):
## kdict
kdict = nkdict(axes,dgrid,fourier)
## klength
if(kindex is None):
klength = nklength(kdict)
else:
klength = kindex
## power spectrum
ps = np.zeros(klength.size)
for ii in np.ndindex(kdict.shape):
position = np.searchsorted(klength,kdict[ii])
ps[position] += fieldabs[ii]
else:
## power spectrum
ps = np.zeros(rho.size)
for ii in np.ndindex(pindex.shape):
ps[pindex[ii]] += fieldabs[ii]
ps = np.divide(ps,rho)
return ps
def get_power_index(axes,dgrid,zerocentered,irred=False,fourier=True):
"""
Returns the index of the Fourier grid points in a numpy
array, ordered following the zerocentered flag.
Parameters
----------
axes : ndarray
An array with the length of each axis.
dgrid : ndarray
An array with the pixel length of each axis.
zerocentered : bool
Whether the output array should be zerocentered, i.e. starting with
negative Fourier modes going over the zero mode to positive modes,
or not zerocentered, where zero, positive and negative modes are
simpy ordered consecutively.
irred : bool : *optional*
If True, the function returns an array of all k-vector lengths and
their degeneracy factors. If False, just the power index array is
returned.
fourier : bool : *optional*
Whether the output should be in Fourier space or not
(default=False).
Returns
-------
index or {klength, rho} : scalar or list
Returns either an array of all k-vector lengths and
their degeneracy factors or just the power index array
depending on the flag irred.
"""
## kdict, klength
if(np.any(zerocentered==False)):
kdict = np.fft.fftshift(nkdict(axes,dgrid,fourier),axes=shiftaxes(zerocentered,st_to_zero_mode=True))
else:
kdict = nkdict(axes,dgrid,fourier)
klength = nklength(kdict)
## output
if(irred):
rho = np.zeros(klength.shape,dtype=np.int)
for ii in np.ndindex(kdict.shape):
rho[np.searchsorted(klength,kdict[ii])] += 1
return klength,rho
else:
ind = np.empty(axes,dtype=np.int)
for ii in np.ndindex(kdict.shape):
ind[ii] = np.searchsorted(klength,kdict[ii])
return ind
def get_power_indices(axes,dgrid,zerocentered,fourier=True):
"""
Returns the index of the Fourier grid points in a numpy
array, ordered following the zerocentered flag.
Parameters
----------
axes : ndarray
An array with the length of each axis.
dgrid : ndarray
An array with the pixel length of each axis.
zerocentered : bool
Whether the output array should be zerocentered, i.e. starting with
negative Fourier modes going over the zero mode to positive modes,
or not zerocentered, where zero, positive and negative modes are
simpy ordered consecutively.
irred : bool : *optional*
If True, the function returns an array of all k-vector lengths and
their degeneracy factors. If False, just the power index array is
returned.
fourier : bool : *optional*
Whether the output should be in Fourier space or not
(default=False).
Returns
-------
index, klength, rho : ndarrays
Returns the power index array, an array of all k-vector lengths and
their degeneracy factors.
"""
## kdict, klength
if(np.any(zerocentered==False)):
kdict = np.fft.fftshift(nkdict(axes,dgrid,fourier),axes=shiftaxes(zerocentered,st_to_zero_mode=True))
else:
kdict = nkdict(axes,dgrid,fourier)
klength = nklength(kdict)
## output
ind = np.empty(axes,dtype=np.int)
rho = np.zeros(klength.shape,dtype=np.int)
for ii in np.ndindex(kdict.shape):
ind[ii] = np.searchsorted(klength,kdict[ii])
rho[ind[ii]] += 1
return ind,klength,rho
def bin_power_indices(pindex,kindex,rho,log=False,nbin=None,binbounds=None):
"""
Returns the (re)binned power indices associated with the Fourier grid.
Parameters
----------
pindex : ndarray
Index of the Fourier grid points in a numpy.ndarray ordered
following the zerocentered flag (default=None).
kindex : ndarray
Array of all k-vector lengths (default=None).
rho : ndarray
Degeneracy of the Fourier grid, indicating how many k-vectors in
Fourier space have the same length (default=None).
log : bool
Flag specifying if the binning is performed on logarithmic scale
(default: False).
nbin : integer
Number of used bins (default: None).
binbounds : {list, array}
Array-like inner boundaries of the used bins (default: None).
Returns
-------
pindex, kindex, rho : ndarrays
The (re)binned power indices.
"""
## boundaries
if(binbounds is not None):
binbounds = np.sort(binbounds)
## equal binning
else:
if(log is None):
log = False
if(log):
k = np.r_[0,np.log(kindex[1:])]
else:
k = kindex
dk = np.max(k[2:]-k[1:-1]) ## minimal dk
if(nbin is None):
nbin = int((k[-1]-0.5*(k[2]+k[1]))/dk-0.5) ## maximal nbin
else:
nbin = min(int(nbin),int((k[-1]-0.5*(k[2]+k[1]))/dk+2.5))
dk = (k[-1]-0.5*(k[2]+k[1]))/(nbin-2.5)
binbounds = np.r_[0.5*(3*k[1]-k[2]),0.5*(k[1]+k[2])+dk*np.arange(nbin-2)]
if(log):
binbounds = np.exp(binbounds)
## reordering
reorder = np.searchsorted(binbounds,kindex)
rho_ = np.zeros(len(binbounds)+1,dtype=rho.dtype)
kindex_ = np.empty(len(binbounds)+1,dtype=kindex.dtype)
for ii in range(len(reorder)):
if(rho_[reorder[ii]]==0):
kindex_[reorder[ii]] = kindex[ii]
rho_[reorder[ii]] += rho[ii]
else:
kindex_[reorder[ii]] = (kindex_[reorder[ii]]*rho_[reorder[ii]]+kindex[ii]*rho[ii])/(rho_[reorder[ii]]+rho[ii])
rho_[reorder[ii]] += rho[ii]
return reorder[pindex],kindex_,rho_
def nhermitianize(field,zerocentered):
"""
Hermitianizes an arbitrary n-dimensional field. Becomes relatively slow
for large n.
Parameters
----------
field : ndarray
The input field that should be hermitianized.
zerocentered : bool
Whether the output array should be zerocentered, i.e. starting with
negative Fourier modes going over the zero mode to positive modes,
or not zerocentered, where zero, positive and negative modes are
simpy ordered consecutively.
Returns
-------
hermfield : ndarray
The hermitianized field.
"""
## shift zerocentered axes
if(np.any(zerocentered==True)):
field = np.fft.fftshift(field, axes=shiftaxes(zerocentered))
# for index in np.ndenumerate(field):
# negind = tuple(-np.array(index[0]))
# field[negind] = np.conjugate(index[1])
# if(field[negind]==field[index[0]]):
# field[index[0]] = np.abs(index[1])*(np.sign(index[1].real)+(np.sign(index[1].real)==0)*np.sign(index[1].imag)).astype(np.int)
subshape = np.array(field.shape,dtype=np.int) ## == axes
maxindex = subshape//2
subshape[np.argmax(subshape)] = subshape[np.argmax(subshape)]//2+1 ## ~half larges axis
for ii in np.ndindex(tuple(subshape)):
negii = tuple(-np.array(ii))
field[negii] = np.conjugate(field[ii])
for ii in np.ndindex((2,)*maxindex.size):
index = tuple(ii*maxindex)
field[index] = np.abs(field[index])*(np.sign(field[index].real)+(np.sign(field[index].real)==0)*-np.sign(field[index].imag)).astype(np.int) ## minus since overwritten before
## reshift zerocentered axes
if(np.any(zerocentered==True)):
field = np.fft.fftshift(field,axes=shiftaxes(zerocentered))
return field
def nhermitianize_fast(field,zerocentered,special=False):
"""
Hermitianizes an arbitrary n-dimensional field faster.
Still becomes comparably slow for large n.
Parameters
----------
field : ndarray
The input field that should be hermitianized.
zerocentered : bool
Whether the output array should be zerocentered, i.e. starting with
negative Fourier modes going over the zero mode to positive modes,
or not zerocentered, where zero, positive and negative modes are
simpy ordered consecutively.
special : bool, *optional*
Must be True for random fields drawn from Gaussian or pm1
distributions.
Returns
-------
hermfield : ndarray
The hermitianized field.
"""
## shift zerocentered axes
if(np.any(zerocentered==True)):
field = np.fft.fftshift(field, axes=shiftaxes(zerocentered))
dummy = np.conjugate(field)
## mirror conjugate field
for ii in range(field.ndim):
dummy = np.swapaxes(dummy,0,ii)
dummy = np.flipud(dummy)
dummy = np.roll(dummy,1,axis=0)
dummy = np.swapaxes(dummy,0,ii)
if(special): ## special normalisation for certain random fields
field = np.sqrt(0.5)*(field+dummy)
maxindex = np.array(field.shape,dtype=np.int)//2
for ii in np.ndindex((2,)*maxindex.size):
index = tuple(ii*maxindex)
field[index] *= np.sqrt(0.5)
else: ## regular case
field = 0.5*(field+dummy)
## reshift zerocentered axes
if(np.any(zerocentered==True)):
field = np.fft.fftshift(field,axes=shiftaxes(zerocentered))
return field
def random_hermitian_pm1(datatype,zerocentered,shape):
"""
Draws a set of hermitianized random, complex pm1 numbers.
"""
field = np.random.randint(4,high=None,size=np.prod(shape,axis=0,dtype=np.int,out=None)).reshape(shape,order='C')
dummy = np.copy(field)
## mirror field
for ii in range(field.ndim):
dummy = np.swapaxes(dummy,0,ii)
dummy = np.flipud(dummy)
dummy = np.roll(dummy,1,axis=0)
dummy = np.swapaxes(dummy,0,ii)
field = (field+dummy+2*(field>dummy)*((field+dummy)%2))%4 ## wicked magic
x = np.array([1+0j,0+1j,-1+0j,0-1j],dtype=datatype)[field]
## (re)shift zerocentered axes
if(np.any(zerocentered==True)):
field = np.fft.fftshift(field,axes=shiftaxes(zerocentered))
return x
#-----------------------------------------------------------------------------
# Auxiliary functions
#-----------------------------------------------------------------------------
def shiftaxes(zerocentered,st_to_zero_mode=False):
"""
Shifts the axes in a special way needed for some functions
"""
axes = []
for ii in range(len(zerocentered)):
if(st_to_zero_mode==False)and(zerocentered[ii]):
axes += [ii]
if(st_to_zero_mode==True)and(not zerocentered[ii]):
axes += [ii]
return axes
def nkdict(axes,dgrid,fourier=True):
"""
Calculates an n-dimensional array with its entries being the lengths of
the k-vectors from the zero point of the Fourier grid.
"""
if(fourier):
dk = dgrid
else:
dk = np.array([1/axes[i]/dgrid[i] for i in range(len(axes))])
kdict = np.empty(axes)
for ii in np.ndindex(kdict.shape):
kdict[ii] = np.sqrt(np.sum(((ii-axes//2)*dk)**2))
return kdict
def nklength(kdict):
return np.sort(list(set(kdict.flatten())))
#def drawherm(vector,klength,kdict,ps): ## vector = np.zeros(kdict.shape,dtype=np.complex)
# for ii in np.ndindex(vector.shape):
# if(vector[ii]==np.complex(0.,0.)):
# vector[ii] = np.sqrt(0.5*ps[np.searchsorted(klength,kdict[ii])])*np.complex(np.random.normal(0.,1.),np.random.normal(0.,1.))
# negii = tuple(-np.array(ii))
# vector[negii] = np.conjugate(vector[ii])
# if(vector[negii]==vector[ii]):
# vector[ii] = np.float(np.sqrt(ps[klength==kdict[ii]]))*np.random.normal(0.,1.)
# return vector
def drawherm(klength,kdict,ps):
"""
Draws a hermitian random field from a Gaussian distribution.
"""
# vector = np.zeros(kdict.shape,dtype='complex')
# for ii in np.ndindex(vector.shape):
# if(vector[ii]==np.complex(0.,0.)):
# vector[ii] = np.sqrt(0.5*ps[np.searchsorted(klength,kdict[ii])])*np.complex(np.random.normal(0.,1.),np.random.normal(0.,1.))
# negii = tuple(-np.array(ii))
# vector[negii] = np.conjugate(vector[ii])
# if(vector[negii]==vector[ii]):
# vector[ii] = np.float(np.sqrt(ps[np.searchsorted(klength,kdict[ii])]))*np.random.normal(0.,1.)
# return vector
vec = np.random.normal(loc=0,scale=1,size=kdict.size).reshape(kdict.shape)
vec = np.fft.fftn(vec)/np.sqrt(np.prod(kdict.shape))
for ii in np.ndindex(kdict.shape):
vec[ii] *= np.sqrt(ps[np.searchsorted(klength,kdict[ii])])
return vec
#def drawwild(vector,klength,kdict,ps,real_corr=1): ## vector = np.zeros(kdict.shape,dtype=np.complex)
# for ii in np.ndindex(vector.shape):
# vector[ii] = np.sqrt(real_corr*0.5*ps[klength==kdict[ii]])*np.complex(np.random.normal(0.,1.),np.random.normal(0.,1.))
# return vector
def drawwild(klength,kdict,ps,real_corr=1):
"""
Draws a field of arbitrary symmetry from a Gaussian distribution.
"""
vec = np.empty(kdict.size,dtype=np.complex)
vec.real = np.random.normal(loc=0,scale=np.sqrt(real_corr*0.5),size=kdict.size)
vec.imag = np.random.normal(loc=0,scale=np.sqrt(real_corr*0.5),size=kdict.size)
vec = vec.reshape(kdict.shape)
for ii in np.ndindex(kdict.shape):
vec[ii] *= np.sqrt(ps[np.searchsorted(klength,kdict[ii])])
return vec