## NIFTY (Numerical Information Field Theory) has been developed at the ## Max-Planck-Institute for Astrophysics. ## ## Copyright (C) 2013 Max-Planck-Society ## ## Author: Marco Selig ## Project homepage: ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ## See the GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . """ .. __ ____ __ .. /__/ / _/ / /_ .. __ ___ __ / /_ / _/ __ __ .. / _ | / / / _/ / / / / / / .. / / / / / / / / / /_ / /_/ / .. /__/ /__/ /__/ /__/ \___/ \___ / demo .. /______/ NIFTY demo applying a Wiener filter using explicit matrices. """ from __future__ import division from nifty import * # version 0.7.0 if __name__ == "__main__": # some signal space; e.g., a one-dimensional regular grid x_space = rg_space([128,]) # define signal space k_space = x_space.get_codomain() # get conjugate space # some power spectrum power = (lambda k: 42 / (k + 1) ** 3) S = power_operator(k_space, spec=power) # define signal covariance s = S.get_random_field(domain=x_space) # generate signal s -= s.val.mean() R = response_operator(x_space, sigma=0.0, mask=1.0, assign=None) # define response d_space = R.target # get data space # some noise variance delta = 1000 * (np.arange(1, x_space.dim() + 1) / x_space.dim()) ** 5 N = diagonal_operator(d_space, diag=delta, bare=True) # define noise covariance n = N.get_random_field(domain=d_space) # generate noise d = R(s) + n # compute data j = R.adjoint_times(N.inverse_times(d)) # define information source class M_operator(operator): def _multiply(self, x): N, R = self.para return R.adjoint_times(N.inverse_times(R.times(x))) C = explicify(S, newdomain=x_space, newtarget=x_space) # explicify S M = M_operator(x_space, sym=True, uni=False, imp=True, para=(N, R)) M = explicify(M) # explicify M D = (C.inverse() + M).inverse() # define information propagator m = D(j) # reconstruct map vminmax = {"vmin":1.5 * s.val.min(), "vmax":1.5 * s.val.max()} s.plot(title="signal", **vminmax) # plot signal d_ = field(x_space, val=d.val, target=k_space) d_.plot(title="data", **vminmax) # plot data m.plot(title="reconstructed map", error=D.diag(bare=True), **vminmax) # plot map D.plot(title="information propagator", bare=True) # plot information propagator