# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
import numpy as np
from .line_search import LineSearch
class LineSearchStrongWolfe(LineSearch):
"""Class for finding a step size that satisfies the strong Wolfe conditions.
Algorithm contains two stages. It begins whit a trial step length and
keeps increasing it until it finds an acceptable step length or an
interval. If it does not satisfy the Wolfe conditions, it performs the Zoom
algorithm (second stage). By interpolating it decreases the size of the
interval until an acceptable step length is found.
Parameters
----------
c1 : float
Parameter for Armijo condition rule. (Default: 1e-4)
c2 : float
Parameter for curvature condition rule. (Default: 0.9)
max_step_size : float
Maximum step allowed in to be made in the descent direction.
(Default: 50)
max_iterations : integer
Maximum number of iterations performed by the line search algorithm.
(Default: 10)
max_zoom_iterations : integer
Maximum number of iterations performed by the zoom algorithm.
(Default: 10)
Attributes
----------
c1 : float
Parameter for Armijo condition rule.
c2 : float
Parameter for curvature condition rule.
max_step_size : float
Maximum step allowed in to be made in the descent direction.
max_iterations : integer
Maximum number of iterations performed by the line search algorithm.
max_zoom_iterations : integer
Maximum number of iterations performed by the zoom algorithm.
"""
def __init__(self, c1=1e-4, c2=0.9,
max_step_size=1000000000, max_iterations=100,
max_zoom_iterations=30):
super(LineSearchStrongWolfe, self).__init__()
self.c1 = np.float(c1)
self.c2 = np.float(c2)
self.max_step_size = max_step_size
self.max_iterations = int(max_iterations)
self.max_zoom_iterations = int(max_zoom_iterations)
def perform_line_search(self, energy, pk, f_k_minus_1=None):
"""Performs the first stage of the algorithm.
It starts with a trial step size and it keeps increasing it until it
satisfy the strong Wolf conditions. It also performs the descent and
returns the optimal step length and the new enrgy.
Parameters
----------
energy : Energy object
Energy object from which we will calculate the energy and the
gradient at a specific point.
pk : Field
Unit vector pointing into the search direction.
f_k_minus_1 : float
Value of the fuction (which is being minimized) at the k-1
iteration of the line search procedure. (Default: None)
Returns
-------
alpha_star : float
The optimal step length in the descent direction.
phi_star : float
Value of the energy after the performed descent.
energy_star : Energy object
The new Energy object on the new position.
"""
self._set_line_energy(energy, pk, f_k_minus_1=f_k_minus_1)
max_step_size = self.max_step_size
max_iterations = self.max_iterations
# initialize the zero phis
old_phi_0 = self.f_k_minus_1
le_0 = self.line_energy.at(0)
phi_0 = le_0.value
phiprime_0 = le_0.directional_derivative
assert phiprime_0<0, "input direction must be a descent direction"
# set alphas
alpha0 = 0.
if self.preferred_initial_step_size is not None:
alpha1 = self.preferred_initial_step_size
elif old_phi_0 is not None and phiprime_0 != 0:
alpha1 = min(1.0, 1.01*2*(phi_0 - old_phi_0)/phiprime_0)
if alpha1 < 0:
alpha1 = 1.0
else:
alpha1 = 1.0
# give the alpha0 phis the right init value
phi_alpha0 = phi_0
phiprime_alpha0 = phiprime_0
# start the minimization loop
for i in xrange(max_iterations):
le_alpha1 = self.line_energy.at(alpha1)
phi_alpha1 = le_alpha1.value
if alpha1 == 0:
self.logger.warn("Increment size became 0.")
alpha_star = 0.
phi_star = phi_0
le_star = le_0
break
if (phi_alpha1 > phi_0 + self.c1*alpha1*phiprime_0) or \
((phi_alpha1 >= phi_alpha0) and (i > 0)):
(alpha_star, phi_star, le_star) = self._zoom(
alpha0, alpha1,
phi_0, phiprime_0,
phi_alpha0,
phiprime_alpha0,
phi_alpha1)
break
phiprime_alpha1 = le_alpha1.directional_derivative
if abs(phiprime_alpha1) <= -self.c2*phiprime_0:
alpha_star = alpha1
phi_star = phi_alpha1
le_star = le_alpha1
break
if phiprime_alpha1 >= 0:
(alpha_star, phi_star, le_star) = self._zoom(
alpha1, alpha0,
phi_0, phiprime_0,
phi_alpha1,
phiprime_alpha1,
phi_alpha0)
break
# update alphas
alpha0, alpha1 = alpha1, min(2*alpha1, max_step_size)
if alpha1 == max_step_size:
print "reached max step size, bailing out"
alpha_star = alpha1
phi_star = phi_alpha1
le_star = le_alpha1
break
phi_alpha0 = phi_alpha1
phiprime_alpha0 = phiprime_alpha1
else:
# max_iterations was reached
alpha_star = alpha1
phi_star = phi_alpha1
le_star = le_alpha1
self.logger.error("The line search algorithm did not converge.")
# extract the full energy from the line_energy
energy_star = le_star.energy
direction_length = pk.norm()
step_length = alpha_star * direction_length
return step_length, phi_star, energy_star
def _zoom(self, alpha_lo, alpha_hi, phi_0, phiprime_0,
phi_lo, phiprime_lo, phi_hi):
"""Performs the second stage of the line search algorithm.
If the first stage was not successful then the Zoom algorithm tries to
find a suitable step length by using bisection, quadratic, cubic
interpolation.
Parameters
----------
alpha_lo : float
A boundary for the step length interval.
Fulfills Wolfe condition 1.
alpha_hi : float
The other boundary for the step length interval.
phi_0 : float
Value of the energy at the starting point of the line search
algorithm.
phiprime_0 : Field
Gradient at the starting point of the line search algorithm.
phi_lo : float
Value of the energy if we perform a step of length alpha_lo in
descent direction.
phiprime_lo : Field
Gradient at the nwe position if we perform a step of length
alpha_lo in descent direction.
phi_hi : float
Value of the energy if we perform a step of length alpha_hi in
descent direction.
Returns
-------
alpha_star : float
The optimal step length in the descent direction.
phi_star : float
Value of the energy after the performed descent.
energy_star : Energy object
The new Energy object on the new position.
"""
max_iterations = self.max_zoom_iterations
# define the cubic and quadratic interpolant checks
cubic_delta = 0.2 # cubic
quad_delta = 0.1 # quadratic
phiprime_alphaj = 0.
assert phi_lo <= phi_0 + self.c1*alpha_lo*phiprime_0
assert phiprime_lo*(alpha_hi-alpha_lo)<0.
for i in xrange(max_iterations):
#assert phi_lo <= phi_0 + self.c1*alpha_lo*phiprime_0
#assert phiprime_lo*(alpha_hi-alpha_lo)<0.
delta_alpha = alpha_hi - alpha_lo
if delta_alpha < 0:
a, b = alpha_hi, alpha_lo
else:
a, b = alpha_lo, alpha_hi
# Try cubic interpolation
if i > 0:
cubic_check = cubic_delta * delta_alpha
alpha_j = self._cubicmin(alpha_lo, phi_lo, phiprime_lo,
alpha_hi, phi_hi,
alpha_recent, phi_recent)
# If cubic was not successful or not available, try quadratic
if (i == 0) or (alpha_j is None) or (alpha_j > b - cubic_check) or\
(alpha_j < a + cubic_check):
quad_check = quad_delta * delta_alpha
alpha_j = self._quadmin(alpha_lo, phi_lo, phiprime_lo,
alpha_hi, phi_hi)
# If quadratic was not successful, try bisection
if (alpha_j is None) or (alpha_j > b - quad_check) or \
(alpha_j < a + quad_check):
alpha_j = alpha_lo + 0.5*delta_alpha
# Check if the current value of alpha_j is already sufficient
le_alphaj = self.line_energy.at(alpha_j)
phi_alphaj = le_alphaj.value
# If the first Wolfe condition is not met replace alpha_hi
# by alpha_j
if (phi_alphaj > phi_0 + self.c1*alpha_j*phiprime_0) or\
(phi_alphaj >= phi_lo):
alpha_recent, phi_recent = alpha_hi, phi_hi
alpha_hi, phi_hi = alpha_j, phi_alphaj
else:
phiprime_alphaj = le_alphaj.directional_derivative
# If the second Wolfe condition is met, return the result
if abs(phiprime_alphaj) <= -self.c2*phiprime_0:
alpha_star = alpha_j
phi_star = phi_alphaj
le_star = le_alphaj
break
# If not, check the sign of the slope
if phiprime_alphaj*delta_alpha >= 0:
alpha_recent, phi_recent = alpha_hi, phi_hi
alpha_hi, phi_hi = alpha_lo, phi_lo
else:
alpha_recent, phi_recent = alpha_lo, phi_lo
# Replace alpha_lo by alpha_j
(alpha_lo, phi_lo, phiprime_lo) = (alpha_j, phi_alphaj,
phiprime_alphaj)
else:
alpha_star, phi_star, le_star = \
alpha_j, phi_alphaj, le_alphaj
self.logger.error("The line search algorithm (zoom) did not "
"converge.")
return alpha_star, phi_star, le_star
def _cubicmin(self, a, fa, fpa, b, fb, c, fc):
"""Estimating the minimum with cubic interpolation.
Finds the minimizer for a cubic polynomial that goes through the
points ( a,f(a) ), ( b,f(b) ), and ( c,f(c) ) with derivative at point
a of fpa.
f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
If no minimizer can be found return None
Parameters
----------
a : float
Selected point.
fa : float
Value of polynomial at point a.
fpa : Field
Derivative at point a.
b : float
Selected point.
fb : float
Value of polynomial at point b.
c : float
Selected point.
fc : float
Value of polynomial at point c.
Returns
-------
xmin : float
Position of the approximated minimum.
"""
with np.errstate(divide='raise', over='raise', invalid='raise'):
try:
C = fpa
db = b - a
dc = c - a
denom = db * db * dc * dc * (db - dc)
d1 = np.empty((2, 2))
d1[0, 0] = dc * dc
d1[0, 1] = -(db*db)
d1[1, 0] = -(dc*dc*dc)
d1[1, 1] = db*db*db
[A, B] = np.dot(d1, np.asarray([fb - fa - C * db,
fc - fa - C * dc]).flatten())
A /= denom
B /= denom
radical = B * B - 3 * A * C
xmin = a + (-B + np.sqrt(radical)) / (3 * A)
except ArithmeticError:
return None
if not np.isfinite(xmin):
return None
return xmin
def _quadmin(self, a, fa, fpa, b, fb):
"""Estimating the minimum with quadratic interpolation.
Finds the minimizer for a quadratic polynomial that goes through
the points ( a,f(a) ), ( b,f(b) ) with derivative at point a of fpa.
f(x) = B*(x-a)^2 + C*(x-a) + D
Parameters
----------
a : float
Selected point.
fa : float
Value of polynomial at point a.
fpa : Field
Derivative at point a.
b : float
Selected point.
fb : float
Value of polynomial at point b.
Returns
-------
xmin : float
Position of the approximated minimum.
"""
# f(x) = B*(x-a)^2 + C*(x-a) + D
with np.errstate(divide='raise', over='raise', invalid='raise'):
try:
D = fa
C = fpa
db = b - a * 1.0
B = (fb - D - C * db) / (db * db)
xmin = a - C / (2.0 * B)
except ArithmeticError:
return None
if not np.isfinite(xmin):
return None
return xmin