# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # # Copyright(C) 2013-2017 Max-Planck-Society # # NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik # and financially supported by the Studienstiftung des deutschen Volkes. import unittest import numpy as np from numpy.testing import assert_equal, assert_approx_equal,\ assert_allclose from nifty import Field,\ RGSpace,\ PowerSpace,\ SmoothingOperator from itertools import product from test.common import expand def _get_rtol(tp): if (tp == np.float64) or (tp == np.complex128): return 1e-10 else: return 1e-5 class SmoothingOperator_Tests(unittest.TestCase): spaces = [RGSpace(100)] @expand(product(spaces, [0., .5, 5.], [True, False])) def test_property(self, space, sigma, log_distances): op = SmoothingOperator(space, sigma=sigma, log_distances=log_distances) if op.domain[0] != space: raise TypeError if op.unitary != False: raise ValueError if op.self_adjoint != True: raise ValueError if op.sigma != sigma: raise ValueError if op.log_distances != log_distances: raise ValueError @expand(product(spaces, [0., .5, 5.], [True, False])) def test_adjoint_times(self, space, sigma, log_distances): op = SmoothingOperator(space, sigma=sigma, log_distances=log_distances) rand1 = Field.from_random('normal', domain=space) rand2 = Field.from_random('normal', domain=space) tt1 = rand1.vdot(op.times(rand2)) tt2 = rand2.vdot(op.adjoint_times(rand1)) assert_approx_equal(tt1, tt2) @expand(product(spaces, [0., .5, 5.], [False])) def test_times(self, space, sigma, log_distances): op = SmoothingOperator(space, sigma=sigma, log_distances=log_distances) rand1 = Field(space, val=0.) rand1.val[0] = 1. tt1 = op.times(rand1) assert_approx_equal(1, tt1.sum()) @expand(product(spaces, [0., .5, 5.], [True, False])) def test_inverse_adjoint_times(self, space, sigma, log_distances): op = SmoothingOperator(space, sigma=sigma, log_distances=log_distances) rand1 = Field.from_random('normal', domain=space) rand2 = Field.from_random('normal', domain=space) tt1 = rand1.vdot(op.inverse_times(rand2)) tt2 = rand2.vdot(op.inverse_adjoint_times(rand1)) assert_approx_equal(tt1, tt2) @expand(product([100, 200], [1, 0.4], [0., 1., 3.7], [np.float64, np.complex128])) def test_smooth_regular1(self, sz, d, sigma, tp): tol = _get_rtol(tp) sp = RGSpace(sz, harmonic=True, distances=d) smo = SmoothingOperator(sp, sigma=sigma) inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4, dtype=tp) out = smo(inp) inp = inp.val.get_full_data() assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol) @expand(product([10, 15], [7, 10], [1, 0.4], [2, 0.3], [0., 1., 3.7], [np.float64, np.complex128])) def test_smooth_regular2(self, sz1, sz2, d1, d2, sigma, tp): tol = _get_rtol(tp) sp = RGSpace([sz1, sz2], distances=[d1, d2], harmonic=True) smo = SmoothingOperator(sp, sigma=sigma) inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4, dtype=tp) out = smo(inp) inp = inp.val.get_full_data() assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol) @expand(product([100, 200], [False, True], [0., 1., 3.7], [np.float64, np.complex128])) def test_smooth_irregular1(self, sz, log, sigma, tp): tol = _get_rtol(tp) sp = RGSpace(sz, harmonic=True) ps = PowerSpace(sp, nbin=sz, logarithmic=log) smo = SmoothingOperator(ps, sigma=sigma) inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4, dtype=tp) out = smo(inp) inp = inp.val.get_full_data() assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol) @expand(product([10, 15], [7, 10], [False, True], [0., 1., 3.7], [np.float64, np.complex128])) def test_smooth_irregular2(self, sz1, sz2, log, sigma, tp): tol = _get_rtol(tp) sp = RGSpace([sz1, sz2], harmonic=True) ps = PowerSpace(sp, logarithmic=log) smo = SmoothingOperator(ps, sigma=sigma) inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4, dtype=tp) out = smo(inp) inp = inp.val.get_full_data() assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)