Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
f5fae368
Commit
f5fae368
authored
Aug 15, 2017
by
Theo Steininger
Browse files
Merge branch 'tweak_demos' into 'master'
cosmetics and adjustments See merge request !182
parents
ec5edd53
6d16a1f2
Pipeline
#16563
passed with stages
in 32 minutes and 40 seconds
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
demos/critical_filtering.py
View file @
f5fae368
...
...
@@ -23,9 +23,9 @@ def plot_parameters(m, t, p, p_d):
t
=
t
.
val
.
get_full_data
().
real
p
=
p
.
val
.
get_full_data
().
real
p_d
=
p_d
.
val
.
get_full_data
().
real
pl
.
plot
([
go
.
Heatmap
(
z
=
m
)],
filename
=
'map.html'
)
pl
.
plot
([
go
.
Heatmap
(
z
=
m
)],
filename
=
'map.html'
,
auto_open
=
False
)
pl
.
plot
([
go
.
Scatter
(
x
=
x
,
y
=
t
),
go
.
Scatter
(
x
=
x
,
y
=
p
),
go
.
Scatter
(
x
=
x
,
y
=
p_d
)],
filename
=
"t.html"
)
go
.
Scatter
(
x
=
x
,
y
=
p_d
)],
filename
=
"t.html"
,
auto_open
=
False
)
class
AdjointFFTResponse
(
LinearOperator
):
...
...
@@ -106,7 +106,7 @@ if __name__ == "__main__":
data_power
=
log
(
fft
(
d
).
power_analyze
(
binbounds
=
p_space
.
binbounds
))
d_data
=
d
.
val
.
get_full_data
().
real
if
rank
==
0
:
pl
.
plot
([
go
.
Heatmap
(
z
=
d_data
)],
filename
=
'data.html'
)
pl
.
plot
([
go
.
Heatmap
(
z
=
d_data
)],
filename
=
'data.html'
,
auto_open
=
False
)
# Minimization strategy
def
convergence_measure
(
a_energy
,
iteration
):
# returns current energy
...
...
demos/wiener_filter_via_hamiltonian.py
View file @
f5fae368
...
...
@@ -10,6 +10,7 @@ rank = comm.rank
np
.
random
.
seed
(
42
)
class
AdjointFFTResponse
(
LinearOperator
):
def
__init__
(
self
,
FFT
,
R
,
default_spaces
=
None
):
super
(
AdjointFFTResponse
,
self
).
__init__
(
default_spaces
)
...
...
@@ -23,6 +24,7 @@ class AdjointFFTResponse(LinearOperator):
def
_adjoint_times
(
self
,
x
,
spaces
=
None
):
return
self
.
FFT
(
self
.
R
.
adjoint_times
(
x
))
@
property
def
domain
(
self
):
return
self
.
_domain
...
...
@@ -36,13 +38,12 @@ class AdjointFFTResponse(LinearOperator):
return
False
if
__name__
==
"__main__"
:
distribution_strategy
=
'not'
# Set up position space
s_space
=
RGSpace
([
128
,
128
])
s_space
=
RGSpace
([
128
,
128
])
# s_space = HPSpace(32)
# Define harmonic transformation and associated harmonic space
...
...
@@ -52,7 +53,8 @@ if __name__ == "__main__":
# Setting up power space
p_space
=
PowerSpace
(
h_space
,
distribution_strategy
=
distribution_strategy
)
# Choosing the prior correlation structure and defining correlation operator
# Choosing the prior correlation structure and defining
# correlation operator
p_spec
=
(
lambda
k
:
(
42
/
(
k
+
1
)
**
3
))
S
=
create_power_operator
(
h_space
,
power_spectrum
=
p_spec
,
...
...
@@ -69,7 +71,7 @@ if __name__ == "__main__":
Instrument
=
DiagonalOperator
(
s_space
,
diagonal
=
1.
)
# Instrument._diagonal.val[200:400, 200:400] = 0
#Adding a harmonic transformation to the instrument
#
Adding a harmonic transformation to the instrument
R
=
AdjointFFTResponse
(
fft
,
Instrument
)
signal_to_noise
=
1.
N
=
DiagonalOperator
(
s_space
,
diagonal
=
ss
.
var
()
/
signal_to_noise
,
bare
=
True
)
...
...
@@ -84,9 +86,9 @@ if __name__ == "__main__":
# Choosing the minimization strategy
def
convergence_measure
(
energy
,
iteration
):
# returns current energy
def
convergence_measure
(
energy
,
iteration
):
# returns current energy
x
=
energy
.
value
print
(
x
,
iteration
)
print
(
x
,
iteration
)
# minimizer = SteepestDescent(convergence_tolerance=0,
# iteration_limit=50,
...
...
@@ -109,20 +111,19 @@ if __name__ == "__main__":
m0
=
Field
(
h_space
,
val
=
.
0
)
# Initializing the Wiener Filter energy
energy
=
WienerFilterEnergy
(
position
=
m0
,
d
=
d
,
R
=
R
,
N
=
N
,
S
=
S
,
inverter
=
inverter
)
energy
=
WienerFilterEnergy
(
position
=
m0
,
d
=
d
,
R
=
R
,
N
=
N
,
S
=
S
)
D0
=
energy
.
curvature
# Solving the problem analytically
m0
=
D0
.
inverse_times
(
j
)
sample_variance
=
Field
(
sh
.
domain
,
val
=
0.
+
0j
)
sample_mean
=
Field
(
sh
.
domain
,
val
=
0.
+
0j
)
sample_variance
=
Field
(
sh
.
domain
,
val
=
0.
+
0j
)
sample_mean
=
Field
(
sh
.
domain
,
val
=
0.
+
0j
)
# sampling the uncertainty map
n_samples
=
1
for
i
in
range
(
n_samples
):
sample
=
sugar
.
generate_posterior_sample
(
m0
,
D0
)
sample
=
sugar
.
generate_posterior_sample
(
m0
,
D0
)
sample_variance
+=
sample
**
2
sample_mean
+=
sample
variance
=
sample_variance
/
n_samples
-
(
sample_mean
/
n_samples
)
nifty/library/wiener_filter/wiener_filter_energy.py
View file @
f5fae368
...
...
@@ -7,7 +7,7 @@ class WienerFilterEnergy(Energy):
"""The Energy for the Wiener filter.
It covers the case of linear measurement with
Gaussian noise and Gauss
a
in signal prior with known covariance.
Gaussian noise and Gaussi
a
n signal prior with known covariance.
Parameters
----------
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment