diff --git a/nifty6/minimization/conjugate_gradient.py b/nifty6/minimization/conjugate_gradient.py
index 9028f38abd643a10b7994a803f57b88d656c615e..6b67d14432aefdd44a804054b596830318c9f9c6 100644
--- a/nifty6/minimization/conjugate_gradient.py
+++ b/nifty6/minimization/conjugate_gradient.py
@@ -70,14 +70,14 @@ class ConjugateGradient(Minimizer):
         r = energy.gradient
         d = r if preconditioner is None else preconditioner(r)
 
-        previous_gamma = r.vdot(d).real
+        previous_gamma = r.s_vdot(d).real
         if previous_gamma == 0:
             return energy, controller.CONVERGED
 
         ii = 0
         while True:
             q = energy.apply_metric(d)
-            curv = d.vdot(q).real
+            curv = d.s_vdot(q).real
             if curv == 0.:
                 logger.error("Error: ConjugateGradient: curv==0.")
                 return energy, controller.ERROR
@@ -98,7 +98,7 @@ class ConjugateGradient(Minimizer):
 
             s = r if preconditioner is None else preconditioner(r)
 
-            gamma = r.vdot(s).real
+            gamma = r.s_vdot(s).real
             if gamma < 0:
                 logger.error(
                     "Positive definiteness of preconditioner violated!")
diff --git a/nifty6/minimization/descent_minimizers.py b/nifty6/minimization/descent_minimizers.py
index f1384af753dd44543c5dc3d086e801ac4cf7d2dc..6e1ac9db634c59c734a9bbd82ea706023c6c8257 100644
--- a/nifty6/minimization/descent_minimizers.py
+++ b/nifty6/minimization/descent_minimizers.py
@@ -227,16 +227,16 @@ class L_BFGS(DescentMinimizer):
         if nhist > 0:
             for i in range(k-1, k-nhist-1, -1):
                 idx = i % maxhist
-                alpha[idx] = s[idx].vdot(p)/s[idx].vdot(y[idx])
+                alpha[idx] = s[idx].s_vdot(p)/s[idx].s_vdot(y[idx])
                 p = p - alpha[idx]*y[idx]
             idx = (k-1) % maxhist
-            fact = s[idx].vdot(y[idx]) / y[idx].vdot(y[idx])
+            fact = s[idx].s_vdot(y[idx]) / y[idx].s_vdot(y[idx])
             if fact <= 0.:
                 logger.error("L-BFGS curvature not positive definite!")
             p = p*fact
             for i in range(k-nhist, k):
                 idx = i % maxhist
-                beta = y[idx].vdot(p) / s[idx].vdot(y[idx])
+                beta = y[idx].s_vdot(p) / s[idx].s_vdot(y[idx])
                 p = p + (alpha[idx]-beta)*s[idx]
         self._lastx = x
         self._lastgrad = gradient
@@ -388,12 +388,12 @@ class _InformationStore(object):
         k1 = (k-1) % mmax
         for i in range(m):
             kmi = (k-m+i) % mmax
-            self.ss[kmi, k1] = self.ss[k1, kmi] = self.s[kmi].vdot(self.s[k1])
-            self.yy[kmi, k1] = self.yy[k1, kmi] = self.y[kmi].vdot(self.y[k1])
-            self.sy[kmi, k1] = self.s[kmi].vdot(self.y[k1])
+            self.ss[kmi, k1] = self.ss[k1, kmi] = self.s[kmi].s_vdot(self.s[k1])
+            self.yy[kmi, k1] = self.yy[k1, kmi] = self.y[kmi].s_vdot(self.y[k1])
+            self.sy[kmi, k1] = self.s[kmi].s_vdot(self.y[k1])
         for j in range(m-1):
             kmj = (k-m+j) % mmax
-            self.sy[k1, kmj] = self.s[k1].vdot(self.y[kmj])
+            self.sy[k1, kmj] = self.s[k1].s_vdot(self.y[kmj])
 
         for i in range(m):
             kmi = (k-m+i) % mmax
@@ -403,10 +403,10 @@ class _InformationStore(object):
                 result[i, m+j] = result[m+j, i] = self.sy[kmi, kmj]
                 result[m+i, m+j] = self.yy[kmi, kmj]
 
-            sgrad_i = self.s[kmi].vdot(self.last_gradient)
+            sgrad_i = self.s[kmi].s_vdot(self.last_gradient)
             result[2*m, i] = result[i, 2*m] = sgrad_i
 
-            ygrad_i = self.y[kmi].vdot(self.last_gradient)
+            ygrad_i = self.y[kmi].s_vdot(self.last_gradient)
             result[2*m, m+i] = result[m+i, 2*m] = ygrad_i
 
         result[2*m, 2*m] = self.last_gradient.norm()
diff --git a/nifty6/minimization/line_search.py b/nifty6/minimization/line_search.py
index 89a771b931a4b824d63f22353e960449583d9ffa..7aa4af3276ca5c362249bb467423cd9ce1dce544 100644
--- a/nifty6/minimization/line_search.py
+++ b/nifty6/minimization/line_search.py
@@ -95,7 +95,7 @@ class LineEnergy(object):
         """
         float : The directional derivative at the given `position`.
         """
-        res = self._energy.gradient.vdot(self._line_direction)
+        res = self._energy.gradient.s_vdot(self._line_direction)
         if abs(res.imag) / max(abs(res.real), 1.) > 1e-12:
             from ..logger import logger
             logger.warning("directional derivative has non-negligible "
diff --git a/nifty6/minimization/nonlinear_cg.py b/nifty6/minimization/nonlinear_cg.py
index 7354176f2a1705544dd6e80692de685aad04ff90..843ed694f0f07e0e50a4c8642382fce2f4db1fa2 100644
--- a/nifty6/minimization/nonlinear_cg.py
+++ b/nifty6/minimization/nonlinear_cg.py
@@ -75,17 +75,17 @@ class NonlinearCG(Minimizer):
 
             if self._beta_heuristic == 'Hestenes-Stiefel':
                 # Eq. (5.46) in Nocedal & Wright.
-                beta = max(0.0, (grad_new.vdot(grad_new-grad_old) /
-                                 (grad_new-grad_old).vdot(p)).real)
+                beta = max(0.0, (grad_new.s_vdot(grad_new-grad_old) /
+                                 (grad_new-grad_old).s_vdot(p)).real)
             elif self._beta_heuristic == 'Polak-Ribiere':
                 # Eq. (5.44) in Nocedal & Wright. (with (5.45) additionally)
-                beta = max(0.0, (grad_new.vdot(grad_new-grad_old) /
-                                 (grad_old.vdot(grad_old))).real)
+                beta = max(0.0, (grad_new.s_vdot(grad_new-grad_old) /
+                                 (grad_old.s_vdot(grad_old))).real)
             elif self._beta_heuristic == 'Fletcher-Reeves':
                 # Eq. (5.41a) in Nocedal & Wright.
-                beta = (grad_new.vdot(grad_new)/(grad_old.vdot(grad_old))).real
+                beta = (grad_new.s_vdot(grad_new)/(grad_old.s_vdot(grad_old))).real
             else:
                 # Eq. (5.49) in Nocedal & Wright.
-                beta = (grad_new.vdot(grad_new) /
-                        ((grad_new-grad_old).vdot(p))).real
+                beta = (grad_new.s_vdot(grad_new) /
+                        ((grad_new-grad_old).s_vdot(p))).real
             p = beta*p - grad_new
diff --git a/nifty6/minimization/quadratic_energy.py b/nifty6/minimization/quadratic_energy.py
index be16e55d6248a0fb676d6f3e52b64bf9f7d411dd..7911910b19f484a4a30ae315f2010c729c4238a9 100644
--- a/nifty6/minimization/quadratic_energy.py
+++ b/nifty6/minimization/quadratic_energy.py
@@ -34,9 +34,9 @@ class QuadraticEnergy(Energy):
         else:
             Ax = self._A(self._position)
             self._grad = Ax if b is None else Ax - b
-        self._value = 0.5*self._position.vdot(Ax)
+        self._value = 0.5*self._position.s_vdot(Ax)
         if b is not None:
-            self._value -= b.vdot(self._position)
+            self._value -= b.s_vdot(self._position)
 
     def at(self, position):
         return QuadraticEnergy(position, self._A, self._b)
diff --git a/nifty6/minimization/scipy_minimizer.py b/nifty6/minimization/scipy_minimizer.py
index 353006869ca522dc52670c628a2c64687422025b..06a36a93b11e49cb2d2b25e4a78c5e927d865082 100644
--- a/nifty6/minimization/scipy_minimizer.py
+++ b/nifty6/minimization/scipy_minimizer.py
@@ -74,7 +74,7 @@ class _MinHelper(object):
 
     def _update(self, x):
         pos = _toField(x, self._energy.position)
-        if (pos != self._energy.position).any():
+        if (pos != self._energy.position).s_any():
             self._energy = self._energy.at(pos)
 
     def fun(self, x):
diff --git a/nifty6/multi_field.py b/nifty6/multi_field.py
index d0a629a52bcefc822de31c724242f8024f17a2f7..b57cf8af49add9a1d988325bcb2a2acc7386294e 100644
--- a/nifty6/multi_field.py
+++ b/nifty6/multi_field.py
@@ -169,7 +169,7 @@ class MultiField(object):
         return (nrm ** ord).sum() ** (1./ord)
 #        return np.sqrt(np.abs(self.vdot(x=self)))
 
-    def sum(self):
+    def s_sum(self):
         """Computes the sum all field values.
 
         Returns
@@ -177,7 +177,7 @@ class MultiField(object):
         norm : float
             The sum of the field values.
         """
-        return utilities.my_sum(map(lambda v: v.sum(), self._val))
+        return utilities.my_sum(map(lambda v: v.s_sum(), self._val))
 
     @property
     def size(self):
@@ -207,15 +207,15 @@ class MultiField(object):
             self._domain,
             tuple(self._val[i].clip(lmin[i], lmax[i]) for i in range(ncomp)))
 
-    def all(self):
+    def s_all(self):
         for v in self._val:
-            if not v.all():
+            if not v.s_all():
                 return False
         return True
 
-    def any(self):
+    def s_any(self):
         for v in self._val:
-            if v.any():
+            if v.s_any():
                 return True
         return False
 
diff --git a/test/test_multi_field.py b/test/test_multi_field.py
index 5d06f6fd5316e9e61412285695165f0457e5bc6a..8a3633f6211275af055ceafa55da05f869819cbd 100644
--- a/test/test_multi_field.py
+++ b/test/test_multi_field.py
@@ -26,7 +26,7 @@ dom = ift.makeDomain({"d1": ift.RGSpace(10)})
 def test_vdot():
     f1 = ift.from_random("normal", domain=dom, dtype=np.complex128)
     f2 = ift.from_random("normal", domain=dom, dtype=np.complex128)
-    assert_allclose(f1.vdot(f2), np.conj(f2.vdot(f1)))
+    assert_allclose(f1.s_vdot(f2), np.conj(f2.s_vdot(f1)))
 
 
 def test_func():
@@ -38,7 +38,7 @@ def test_func():
 def test_multifield_field_consistency():
     f1 = ift.full(dom, 27)
     f2 = ift.makeField(dom['d1'], f1['d1'].val)
-    assert_equal(f1.sum(), f2.sum())
+    assert_equal(f1.s_sum(), f2.s_sum())
     assert_equal(f1.size, f2.size)
 
 
@@ -64,9 +64,9 @@ def test_blockdiagonal():
     assert_equal(type(op2), ift.BlockDiagonalOperator)
     f1 = op2(ift.full(dom, 1))
     for val in f1.values():
-        assert_equal((val == 400).all(), True)
+        assert_equal((val == 400).s_all(), True)
     op2 = op + op
     assert_equal(type(op2), ift.BlockDiagonalOperator)
     f1 = op2(ift.full(dom, 1))
     for val in f1.values():
-        assert_equal((val == 40).all(), True)
+        assert_equal((val == 40).s_all(), True)
diff --git a/test/test_operators/test_composed_operator.py b/test/test_operators/test_composed_operator.py
index 15d93db5bf4e64af58cdcad3913dbf134e6459cc..9a66f8b1cd2553203388687e5dc0480d953fbe90 100644
--- a/test/test_operators/test_composed_operator.py
+++ b/test/test_operators/test_composed_operator.py
@@ -43,8 +43,8 @@ def test_times_adjoint_times(space1, space2):
     rand1 = ift.Field.from_random('normal', domain=(space1, space2))
     rand2 = ift.Field.from_random('normal', domain=(space1, space2))
 
-    tt1 = rand2.vdot(op.times(rand1))
-    tt2 = rand1.vdot(op.adjoint_times(rand2))
+    tt1 = rand2.s_vdot(op.times(rand1))
+    tt2 = rand1.s_vdot(op.adjoint_times(rand2))
     assert_allclose(tt1, tt2)
 
 
diff --git a/test/test_operators/test_diagonal_operator.py b/test/test_operators/test_diagonal_operator.py
index 2993652af2278de5252da6db5a6c5c786be37715..f8b85b292919d86c1b65e8dabb1da2cd93e0ee40 100644
--- a/test/test_operators/test_diagonal_operator.py
+++ b/test/test_operators/test_diagonal_operator.py
@@ -42,8 +42,8 @@ def test_times_adjoint(space):
     rand2 = ift.Field.from_random('normal', domain=space)
     diag = ift.Field.from_random('normal', domain=space)
     D = ift.DiagonalOperator(diag)
-    tt1 = rand1.vdot(D.times(rand2))
-    tt2 = rand2.vdot(D.times(rand1))
+    tt1 = rand1.s_vdot(D.times(rand2))
+    tt2 = rand2.s_vdot(D.times(rand1))
     assert_allclose(tt1, tt2)
 
 
diff --git a/test/test_operators/test_smoothing_operator.py b/test/test_operators/test_smoothing_operator.py
index 3bebbc419f43283c5d34bb086498058bd4001239..5beab0a4c3e7fed9688a68b62693f97efa355117 100644
--- a/test/test_operators/test_smoothing_operator.py
+++ b/test/test_operators/test_smoothing_operator.py
@@ -47,8 +47,8 @@ def test_adjoint_times(space, sigma):
     op = ift.HarmonicSmoothingOperator(space, sigma=sigma)
     rand1 = ift.Field.from_random('normal', domain=space)
     rand2 = ift.Field.from_random('normal', domain=space)
-    tt1 = rand1.vdot(op.times(rand2))
-    tt2 = rand2.vdot(op.adjoint_times(rand1))
+    tt1 = rand1.s_vdot(op.times(rand2))
+    tt2 = rand2.s_vdot(op.adjoint_times(rand1))
     assert_allclose(tt1, tt2)
 
 
@@ -58,7 +58,7 @@ def test_times(space, sigma):
     fld[0] = 1.
     rand1 = ift.Field.from_raw(space, fld)
     tt1 = op.times(rand1)
-    assert_allclose(1, tt1.sum())
+    assert_allclose(1, tt1.s_sum())
 
 
 @pmp('sz', [128, 256])
@@ -70,7 +70,7 @@ def test_smooth_regular1(sz, d, sigma, tp):
     inp = ift.Field.from_random(
         domain=sp, random_type='normal', std=1, mean=4, dtype=tp)
     out = smo(inp)
-    assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)
+    assert_allclose(inp.s_sum(), out.s_sum(), rtol=tol, atol=tol)
 
 
 @pmp('sz1', [10, 15])
@@ -84,4 +84,4 @@ def test_smooth_regular2(sz1, sz2, d1, d2, sigma, tp):
     inp = ift.Field.from_random(
         domain=sp, random_type='normal', std=1, mean=4, dtype=tp)
     out = smo(inp)
-    assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)
+    assert_allclose(inp.s_sum(), out.s_sum(), rtol=tol, atol=tol)