Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
NIFTy
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
13
Issues
13
List
Boards
Labels
Service Desk
Milestones
Merge Requests
11
Merge Requests
11
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ift
NIFTy
Commits
e953a066
Commit
e953a066
authored
Feb 20, 2018
by
Martin Reinecke
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
simplifications
parent
6dc4eb7f
Pipeline
#25200
failed with stages
in 6 minutes and 6 seconds
Changes
8
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
15 additions
and
32 deletions
+15
-32
demos/critical_filtering.py
demos/critical_filtering.py
+1
-3
demos/nonlinear_critical_filter.py
demos/nonlinear_critical_filter.py
+1
-3
demos/paper_demos/cartesian_wiener_filter.py
demos/paper_demos/cartesian_wiener_filter.py
+1
-3
demos/paper_demos/wiener_filter.py
demos/paper_demos/wiener_filter.py
+1
-3
demos/wiener_filter_via_curvature.py
demos/wiener_filter_via_curvature.py
+1
-3
demos/wiener_filter_via_hamiltonian.py
demos/wiener_filter_via_hamiltonian.py
+1
-4
nifty4/operators/diagonal_operator.py
nifty4/operators/diagonal_operator.py
+3
-3
nifty4/sugar.py
nifty4/sugar.py
+6
-10
No files found.
demos/critical_filtering.py
View file @
e953a066
...
...
@@ -65,9 +65,7 @@ if __name__ == "__main__":
noiseless_data
=
MeasurementOperator
(
true_sky
)
noise_amplitude
=
noiseless_data
.
val
.
std
()
*
noise_level
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
d_space
)
n
=
ift
.
Field
.
from_random
(
domain
=
d_space
,
random_type
=
'normal'
,
std
=
noise_amplitude
,
mean
=
0
)
n
=
N
.
draw_sample
()
# Creating the mock data
d
=
noiseless_data
+
n
...
...
demos/nonlinear_critical_filter.py
View file @
e953a066
...
...
@@ -66,9 +66,7 @@ if __name__ == "__main__":
noiseless_data
=
MeasurementOperator
(
true_sky
)
noise_amplitude
=
noiseless_data
.
val
.
std
()
*
noise_level
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
d_space
)
n
=
ift
.
Field
.
from_random
(
domain
=
d_space
,
random_type
=
'normal'
,
std
=
noise_amplitude
,
mean
=
0
)
n
=
N
.
draw_sample
()
# Creating the mock data
d
=
noiseless_data
+
n
...
...
demos/paper_demos/cartesian_wiener_filter.py
View file @
e953a066
...
...
@@ -83,9 +83,7 @@ if __name__ == "__main__":
noise_amplitude
=
noiseless_data
.
val
.
std
()
/
signal_to_noise
# Setting up the noise covariance and drawing a random noise realization
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
data_domain
)
noise
=
ift
.
Field
.
from_random
(
domain
=
data_domain
,
random_type
=
'normal'
,
std
=
noise_amplitude
,
mean
=
0
)
noise
=
N
.
draw_sample
()
data
=
noiseless_data
+
noise
# Wiener filter
...
...
demos/paper_demos/wiener_filter.py
View file @
e953a066
...
...
@@ -46,9 +46,7 @@ if __name__ == "__main__":
noise_amplitude
=
noiseless_data
.
val
.
std
()
/
signal_to_noise
# Setting up the noise covariance and drawing a random noise realization
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
data_domain
)
noise
=
ift
.
Field
.
from_random
(
domain
=
data_domain
,
random_type
=
'normal'
,
std
=
noise_amplitude
,
mean
=
0
)
noise
=
N
.
draw_sample
()
data
=
noiseless_data
+
noise
# Wiener filter
...
...
demos/wiener_filter_via_curvature.py
View file @
e953a066
...
...
@@ -73,9 +73,7 @@ if __name__ == "__main__":
noiseless_data
=
R
(
mock_signal
)
noise_amplitude
=
noiseless_data
.
val
.
std
()
/
signal_to_noise
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
data_domain
)
noise
=
ift
.
Field
.
from_random
(
domain
=
data_domain
,
random_type
=
'normal'
,
std
=
noise_amplitude
,
mean
=
0
)
noise
=
N
.
draw_sample
()
data
=
noiseless_data
+
noise
j
=
R
.
adjoint_times
(
N
.
inverse_times
(
data
))
...
...
demos/wiener_filter_via_hamiltonian.py
View file @
e953a066
...
...
@@ -43,10 +43,7 @@ if __name__ == "__main__":
signal_to_noise
=
1.
noise_amplitude
=
noiseless_data
.
val
.
std
()
/
signal_to_noise
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
s_space
)
n
=
ift
.
Field
.
from_random
(
domain
=
s_space
,
random_type
=
'normal'
,
std
=
noise_amplitude
,
mean
=
0
)
n
=
N
.
draw_sample
()
# Create mock data
d
=
noiseless_data
+
n
...
...
nifty4/operators/diagonal_operator.py
View file @
e953a066
...
...
@@ -134,11 +134,11 @@ class DiagonalOperator(EndomorphicOperator):
self
.
_spaces
)
def
draw_sample
(
self
):
if
self
.
_spaces
is
not
None
:
raise
ValueError
(
"
Cannot draw (yet) from this
operator"
)
if
np
.
issubdtype
(
self
.
_ldiag
.
dtype
,
np
.
complexfloating
)
:
raise
ValueError
(
"
cannot draw sample from complex-valued
operator"
)
res
=
Field
.
from_random
(
random_type
=
"normal"
,
domain
=
self
.
_domain
,
dtype
=
self
.
_diagonal
.
dtype
)
res
*=
sqrt
(
self
.
_diagonal
)
res
.
val
[()]
*=
np
.
sqrt
(
self
.
_ldiag
)
return
res
nifty4/sugar.py
View file @
e953a066
...
...
@@ -63,8 +63,9 @@ def power_analyze(field, spaces=None, binbounds=None,
----------
field : Field
The field to be analyzed
spaces : None or int or tuple of int , optional
The set of subdomains for which the powerspectrum shall be computed.
spaces : None or int or tuple of int, optional
The indices of subdomains for which the power spectrum shall be
computed.
If None, all subdomains will be converted.
(default : None).
binbounds : None or array-like, optional
...
...
@@ -85,7 +86,7 @@ def power_analyze(field, spaces=None, binbounds=None,
-------
Field
The output object. Its domain is a PowerSpace and it contains
the power spectrum of
'field'
.
the power spectrum of
`field`
.
"""
for
sp
in
field
.
domain
:
...
...
@@ -133,7 +134,7 @@ def power_synthesize_nonrandom(field, spaces=None):
def
power_synthesize
(
field
,
spaces
=
None
,
real_power
=
True
,
real_signal
=
True
):
"""Returns a sampled field with `field`**2 as its power spectrum.
"""Returns a sampled field with `field`
\
**2 as its power spectrum.
This method draws a Gaussian random field in the harmonic partner
domain of this field's domains, using this field as power spectrum.
...
...
@@ -231,12 +232,7 @@ def create_power_operator(domain, power_spectrum, space=None, dtype=None):
An operator that implements the given power spectrum.
"""
domain
=
DomainTuple
.
make
(
domain
)
if
space
is
None
:
if
len
(
domain
)
!=
1
:
raise
ValueError
(
"space keyword must be set"
)
else
:
space
=
0
space
=
int
(
space
)
space
=
utilities
.
infer_space
(
domain
,
space
)
return
DiagonalOperator
(
create_power_field
(
domain
[
space
],
power_spectrum
,
dtype
),
domain
=
domain
,
spaces
=
space
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment