diff --git a/demos/getting_started_3.py b/demos/getting_started_3.py index 1952cd0a560eb6b932529632485a5ed881c72e8b..513f23cb407cfed6779ed46ee8082485a5435b63 100644 --- a/demos/getting_started_3.py +++ b/demos/getting_started_3.py @@ -1,9 +1,5 @@ import nifty5 as ift -from nifty5.library.los_response import LOSResponse -from nifty5.library.amplitude_model import make_amplitude_model -from nifty5.library.smooth_sky import make_correlated_field import numpy as np -from scipy.io import loadmat def get_random_LOS(n_los): @@ -19,7 +15,7 @@ if __name__ == '__main__': position_space = ift.RGSpace([128, 128]) # Setting up an amplitude model - A, amplitude_internals = make_amplitude_model( + A, amplitude_internals = ift.library.make_amplitude_model( position_space, 16, 1, 10, -4., 1, 0., 1.) # Building the model for a correlated signal @@ -35,14 +31,15 @@ if __name__ == '__main__': Amp = power_distributor(A) correlated_field_h = Amp * xi correlated_field = ht(correlated_field_h) - # # alternatively to the block above one can do: - # correlated_field, _ = make_correlated_field(position_space, A) + # alternatively to the block above one can do: + # correlated_field,_ = ift.library.make_correlated_field(position_space, A) # apply some nonlinearity signal = ift.PointwisePositiveTanh(correlated_field) # Building the Line of Sight response LOS_starts, LOS_ends = get_random_LOS(100) - R = LOSResponse(position_space, starts=LOS_starts, ends=LOS_ends) + R = ift.library.LOSResponse(position_space, starts=LOS_starts, + ends=LOS_ends) # build signal response model and model likelihood signal_response = R(signal) # specify noise diff --git a/nifty5/library/__init__.py b/nifty5/library/__init__.py index 17ea093600476966a5818d81ed59e7556b0805ae..2678799c9b90ce4c4879a418a54102cfb5f504ae 100644 --- a/nifty5/library/__init__.py +++ b/nifty5/library/__init__.py @@ -6,4 +6,4 @@ from .point_sources import PointSources from .poissonian_energy import PoissonianEnergy from .wiener_filter_curvature import WienerFilterCurvature from .wiener_filter_energy import WienerFilterEnergy -from .smooth_sky import make_correlated_field, make_mf_correlated_field +from .correlated_fields import make_correlated_field, make_mf_correlated_field diff --git a/nifty5/library/smooth_sky.py b/nifty5/library/correlated_fields.py similarity index 95% rename from nifty5/library/smooth_sky.py rename to nifty5/library/correlated_fields.py index 86c3deaf632ca3df6aba765ef907df317ff77266..e8605bdec59674d47871840d378364fee5a7c884 100644 --- a/nifty5/library/smooth_sky.py +++ b/nifty5/library/correlated_fields.py @@ -62,6 +62,6 @@ def make_mf_correlated_field(s_space_spatial, s_space_energy, position = MultiField({'xi': Field.from_random('normal', h_space)}) xi = Variable(position)['xi'] - logsky_h = A*xi - logsky = ht(logsky_h) - return PointwiseExponential(logsky) + correlated_field_h = A*xi + correlated_field = ht(correlated_field_h) + return PointwiseExponential(correlated_field) diff --git a/nifty5/library/poissonian_energy.py b/nifty5/library/poissonian_energy.py index e53db9da9649efe202a87d40f6c8ada68fbc3ede..660d52a99b0a9cfbe9be717cd151779a72f79089 100644 --- a/nifty5/library/poissonian_energy.py +++ b/nifty5/library/poissonian_energy.py @@ -26,7 +26,7 @@ from ..sugar import log, makeOp class PoissonianEnergy(Energy): def __init__(self, lamb, d): """ - lamb: Sky model object + lamb: Model object value = 0.5 * s.vdot(s), i.e. a log-Gauss distribution with unit covariance diff --git a/nifty5/models/constant.py b/nifty5/models/constant.py index cce3bccd72c8470233af1690b769a6a5b9328495..9b56641176f3664c78cc64b341b63349f80d9f0f 100644 --- a/nifty5/models/constant.py +++ b/nifty5/models/constant.py @@ -19,7 +19,7 @@ from .model import Model class Constant(Model): - """A sky model with a constant (multi-)field as value. + """A model with a constant (multi-)field as value. Parameters ----------