Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
NIFTy
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
10
Issues
10
List
Boards
Labels
Service Desk
Milestones
Merge Requests
8
Merge Requests
8
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ift
NIFTy
Commits
dcf8a19c
Commit
dcf8a19c
authored
May 16, 2017
by
Martin Reinecke
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove spurious file
parent
f35278d7
Pipeline
#12514
passed with stage
in 5 minutes and 39 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
139 deletions
+0
-139
demos/wiener_filter_harmonic - Kopie.py
demos/wiener_filter_harmonic - Kopie.py
+0
-139
No files found.
demos/wiener_filter_harmonic - Kopie.py
deleted
100644 → 0
View file @
f35278d7
from
nifty
import
*
from
mpi4py
import
MPI
import
plotly.offline
as
py
import
plotly.graph_objs
as
go
comm
=
MPI
.
COMM_WORLD
rank
=
comm
.
rank
def
plot_maps
(
x
,
name
):
trace
=
[
None
]
*
len
(
x
)
keys
=
x
.
keys
()
field
=
x
[
keys
[
0
]]
domain
=
field
.
domain
[
0
]
shape
=
len
(
domain
.
shape
)
max_n
=
domain
.
shape
[
0
]
*
domain
.
distances
[
0
]
step
=
domain
.
distances
[
0
]
x_axis
=
np
.
arange
(
0
,
max_n
,
step
)
if
shape
==
1
:
for
ii
in
xrange
(
len
(
x
)):
trace
[
ii
]
=
go
.
Scatter
(
x
=
x_axis
,
y
=
x
[
keys
[
ii
]].
val
.
get_full_data
(),
name
=
keys
[
ii
])
fig
=
go
.
Figure
(
data
=
trace
)
py
.
plot
(
fig
,
filename
=
name
)
elif
shape
==
2
:
for
ii
in
xrange
(
len
(
x
)):
py
.
plot
([
go
.
Heatmap
(
z
=
x
[
keys
[
ii
]].
val
.
get_full_data
().
real
)],
filename
=
keys
[
ii
])
else
:
raise
TypeError
(
"Only 1D and 2D field plots are supported"
)
def
plot_power
(
x
,
name
):
layout
=
go
.
Layout
(
xaxis
=
dict
(
type
=
'log'
,
autorange
=
True
),
yaxis
=
dict
(
type
=
'log'
,
autorange
=
True
)
)
trace
=
[
None
]
*
len
(
x
)
keys
=
x
.
keys
()
field
=
x
[
keys
[
0
]]
domain
=
field
.
domain
[
0
]
x_axis
=
domain
.
kindex
for
ii
in
xrange
(
len
(
x
)):
trace
[
ii
]
=
go
.
Scatter
(
x
=
x_axis
,
y
=
x
[
keys
[
ii
]].
val
.
get_full_data
(),
name
=
keys
[
ii
])
fig
=
go
.
Figure
(
data
=
trace
,
layout
=
layout
)
py
.
plot
(
fig
,
filename
=
name
)
np
.
random
.
seed
(
42
)
if
__name__
==
"__main__"
:
distribution_strategy
=
'not'
# setting spaces
npix
=
np
.
array
([
500
])
# number of pixels
total_volume
=
1.
# total length
# setting signal parameters
lambda_s
=
.
05
# signal correlation length
sigma_s
=
10.
# signal variance
#setting response operator parameters
length_convolution
=
.
025
exposure
=
1.
# calculating parameters
k_0
=
4.
/
(
2
*
np
.
pi
*
lambda_s
)
a_s
=
sigma_s
**
2.
*
lambda_s
*
total_volume
# creation of spaces
# x1 = RGSpace([npix,npix], distances=total_volume / npix,
# zerocenter=False)
# k1 = RGRGTransformation.get_codomain(x1)
x1
=
HPSpace
(
32
)
k1
=
HPLMTransformation
.
get_codomain
(
x1
)
p1
=
PowerSpace
(
harmonic_partner
=
k1
,
logarithmic
=
False
)
# creating Power Operator with given spectrum
spec
=
(
lambda
k
:
a_s
/
(
1
+
(
k
/
k_0
)
**
2
)
**
2
)
p_field
=
Field
(
p1
,
val
=
spec
)
S_op
=
create_power_operator
(
k1
,
spec
)
# creating FFT-Operator and Response-Operator with Gaussian convolution
Fft_op
=
FFTOperator
(
domain
=
x1
,
target
=
k1
,
domain_dtype
=
np
.
float64
,
target_dtype
=
np
.
complex128
)
R_op
=
ResponseOperator
(
x1
,
sigma
=
[
length_convolution
],
exposure
=
[
exposure
])
# drawing a random field
sk
=
p_field
.
power_synthesize
(
real_signal
=
True
,
mean
=
0.
)
s
=
Fft_op
.
adjoint_times
(
sk
)
signal_to_noise
=
1
N_op
=
DiagonalOperator
(
R_op
.
target
,
diagonal
=
s
.
var
()
/
signal_to_noise
,
bare
=
True
)
n
=
Field
.
from_random
(
domain
=
R_op
.
target
,
random_type
=
'normal'
,
std
=
s
.
std
()
/
np
.
sqrt
(
signal_to_noise
),
mean
=
0.
)
d
=
R_op
(
s
)
+
n
# Wiener filter
j
=
Fft_op
.
times
(
R_op
.
adjoint_times
(
N_op
.
inverse_times
(
d
)))
D
=
HarmonicPropagatorOperator
(
S
=
S_op
,
N
=
N_op
,
R
=
R_op
)
mk
=
D
(
j
)
m
=
Fft_op
.
adjoint_times
(
mk
)
# z={}
# z["signal"] = s
# z["reconstructed_map"] = m
# z["data"] = d
# z["lambda"] = R_op(s)
# z["j"] = j
#
# plot_maps(z, "Wiener_filter.html")
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment