Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
NIFTy
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
13
Issues
13
List
Boards
Labels
Service Desk
Milestones
Merge Requests
13
Merge Requests
13
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ift
NIFTy
Commits
db4db3c2
Commit
db4db3c2
authored
Nov 16, 2019
by
Philipp Haim
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
New behaviour of domain tuples
parent
7453ea72
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
110 additions
and
60 deletions
+110
-60
nifty5/library/correlated_fields.py
nifty5/library/correlated_fields.py
+110
-60
No files found.
nifty5/library/correlated_fields.py
View file @
db4db3c2
...
...
@@ -33,21 +33,21 @@ from ..operators.operator import Operator
from
..operators.simple_linear_operators
import
VdotOperator
,
ducktape
from
..operators.value_inserter
import
ValueInserter
from
..probing
import
StatCalculator
from
..sugar
import
from_global_data
,
full
,
makeDomain
,
get_default_codomain
from
..sugar
import
from_global_data
,
f
rom_random
,
f
ull
,
makeDomain
,
get_default_codomain
def
_reshaper
(
x
,
shape
):
x
=
np
.
array
(
x
)
if
x
.
shape
==
shape
:
return
np
.
asfarray
(
x
)
elif
x
.
shape
in
[(),
(
1
,)]
:
return
np
.
full
(
shape
,
x
,
dtype
=
np
.
float
)
def
_reshaper
(
x
,
N
):
x
=
np
.
a
sfa
rray
(
x
)
if
x
.
shape
in
[(),
(
1
,)]
:
return
np
.
full
(
N
,
x
)
if
N
!=
1
else
x
.
reshape
(()
)
elif
x
.
shape
==
(
N
,)
:
return
x
else
:
raise
TypeError
(
"Shape of parameters cannot be interpreted"
)
def
_lognormal_moments
(
mean
,
sig
,
shape
=
()
):
mean
,
sig
=
(
_reshaper
(
param
,
shape
)
for
param
in
(
mean
,
sig
))
def
_lognormal_moments
(
mean
,
sig
,
N
=
1
):
mean
,
sig
=
(
_reshaper
(
param
,
N
)
for
param
in
(
mean
,
sig
))
assert
np
.
all
(
mean
>
0
)
assert
np
.
all
(
sig
>
0
)
logsig
=
np
.
sqrt
(
np
.
log
((
sig
/
mean
)
**
2
+
1
))
...
...
@@ -55,9 +55,12 @@ def _lognormal_moments(mean, sig, shape = ()):
return
logmean
,
logsig
def
_normal
(
mean
,
sig
,
key
,
domain
=
DomainTuple
.
scalar_domain
()):
domain
=
makeDomain
(
domain
)
mean
,
sig
=
(
_reshaper
(
param
,
domain
.
shape
)
for
param
in
(
mean
,
sig
))
def
_normal
(
mean
,
sig
,
key
,
N
=
1
):
if
N
==
1
:
domain
=
DomainTuple
.
scalar_domain
()
else
:
domain
=
UnstructuredDomain
(
N
)
mean
,
sig
=
(
_reshaper
(
param
,
N
)
for
param
in
(
mean
,
sig
))
return
Adder
(
from_global_data
(
domain
,
mean
))
@
(
DiagonalOperator
(
from_global_data
(
domain
,
sig
))
@
ducktape
(
domain
,
None
,
key
))
...
...
@@ -102,13 +105,12 @@ def _stats(op, samples):
class
_LognormalMomentMatching
(
Operator
):
def
__init__
(
self
,
mean
,
sig
,
key
,
domain
=
DomainTuple
.
scalar_domain
()):
def
__init__
(
self
,
mean
,
sig
,
key
,
N_copies
):
key
=
str
(
key
)
logmean
,
logsig
=
_lognormal_moments
(
mean
,
sig
,
domain
.
shape
)
logmean
,
logsig
=
_lognormal_moments
(
mean
,
sig
,
N_copies
)
self
.
_mean
=
mean
self
.
_sig
=
sig
op
=
_normal
(
logmean
,
logsig
,
key
,
domain
).
exp
()
op
=
_normal
(
logmean
,
logsig
,
key
,
N_copies
).
exp
()
self
.
_domain
,
self
.
_target
=
op
.
domain
,
op
.
target
self
.
apply
=
op
.
apply
...
...
@@ -241,11 +243,32 @@ class _slice_extractor(LinearOperator):
res
=
np
.
zeros
(
self
.
_domain
.
shape
)
res
[
self
.
_sl
]
=
x
return
from_global_data
(
self
.
_tgt
(
mode
),
res
)
class
_Distributor
(
LinearOperator
):
def
__init__
(
self
,
dofdex
,
domain
,
target
,
space
=
0
):
self
.
_dofdex
=
dofdex
self
.
_target
=
makeDomain
(
target
)
self
.
_domain
=
makeDomain
(
domain
)
self
.
_sl
=
(
slice
(
None
),)
*
space
self
.
_capability
=
self
.
TIMES
|
self
.
ADJOINT_TIMES
def
apply
(
self
,
x
,
mode
):
self
.
_check_input
(
x
,
mode
)
x
=
x
.
to_global_data
()
if
mode
==
self
.
TIMES
:
res
=
x
[
self
.
_dofdex
]
else
:
res
=
np
.
empty
(
self
.
_tgt
(
mode
).
shape
)
res
[
self
.
_dofdex
]
=
x
return
from_global_data
(
self
.
_tgt
(
mode
),
res
)
class
_Amplitude
(
Operator
):
def
__init__
(
self
,
target
,
fluctuations
,
flexibility
,
asperity
,
loglogavgslope
,
key
,
space
=
0
):
loglogavgslope
,
azm
,
key
,
dofdex
):
"""
fluctuations > 0
flexibility > 0
...
...
@@ -256,10 +279,19 @@ class _Amplitude(Operator):
assert
isinstance
(
flexibility
,
Operator
)
assert
isinstance
(
asperity
,
Operator
)
assert
isinstance
(
loglogavgslope
,
Operator
)
target
=
makeDomain
(
target
)
assert
isinstance
(
target
[
space
],
PowerSpace
)
target
=
makeDomain
(
target
)
N_copies
=
max
(
dofdex
)
+
1
assert
N_copies
>
0
if
N_copies
>
1
:
space
=
1
distributed_tgt
=
makeDomain
((
UnstructuredDomain
(
len
(
dofdex
)),
target
))
target
=
makeDomain
((
UnstructuredDomain
(
N_copies
),
target
))
Distributor
=
_Distributor
(
dofdex
,
target
,
distributed_tgt
,
0
)
else
:
space
=
0
target
=
makeDomain
(
target
)
assert
isinstance
(
target
[
space
],
PowerSpace
)
twolog
=
_TwoLogIntegrations
(
target
,
space
)
dom
=
twolog
.
domain
shp
=
dom
[
space
].
shape
...
...
@@ -299,12 +331,18 @@ class _Amplitude(Operator):
sig_flex
=
vflex
@
expander
@
flexibility
sig_asp
=
vasp
@
expander
@
asperity
sig_fluc
=
vol1
@
ps_expander
@
fluctuations
sig_fluc
=
vol1
@
ps_expander
@
fluctuations
xi
=
ducktape
(
dom
,
None
,
key
)
sigma
=
sig_flex
*
(
Adder
(
shift
)
@
sig_asp
).
sqrt
()
smooth
=
_SlopeRemover
(
target
,
space
)
@
twolog
@
(
sigma
*
xi
)
op
=
_Normalization
(
target
,
space
)
@
(
slope
+
smooth
)
op
=
Adder
(
vol0
)
@
(
sig_fluc
*
op
)
if
space
==
1
:
op
=
Distributor
@
op
sig_fluc
=
Distributor
@
sig_fluc
op
=
(
Distributor
@
Adder
(
vol0
))
@
(
sig_fluc
*
(
ps_expander
@
azm
.
one_over
())
*
op
)
else
:
op
=
(
Adder
(
vol0
))
@
(
sig_fluc
*
(
ps_expander
@
azm
.
one_over
())
*
op
)
self
.
apply
=
op
.
apply
self
.
_fluc
=
fluctuations
...
...
@@ -317,24 +355,26 @@ class _Amplitude(Operator):
class
CorrelatedFieldMaker
:
def
__init__
(
self
,
amplitude_offset
,
prefix
):
def
__init__
(
self
,
amplitude_offset
,
prefix
,
total_N
):
self
.
_a
=
[]
self
.
_spaces
=
[]
self
.
_position_spaces
=
[]
self
.
_azm
=
amplitude_offset
self
.
_prefix
=
prefix
self
.
_total_N
=
total_N
@
staticmethod
def
make
(
offset_amplitude_mean
,
offset_amplitude_stddev
,
prefix
):
def
make
(
offset_amplitude_mean
,
offset_amplitude_stddev
,
prefix
,
total_N
=
1
):
offset_amplitude_stddev
=
float
(
offset_amplitude_stddev
)
offset_amplitude_mean
=
float
(
offset_amplitude_mean
)
assert
offset_amplitude_stddev
>
0
assert
offset_amplitude_mean
>
0
zm
=
_LognormalMomentMatching
(
offset_amplitude_mean
,
offset_amplitude_stddev
,
prefix
+
'zeromode'
)
return
CorrelatedFieldMaker
(
zm
,
prefix
)
prefix
+
'zeromode'
,
total_N
)
return
CorrelatedFieldMaker
(
zm
,
prefix
,
total_N
)
def
add_fluctuations
(
self
,
position_space
,
...
...
@@ -346,36 +386,49 @@ class CorrelatedFieldMaker:
asperity_stddev
,
loglogavgslope_mean
,
loglogavgslope_stddev
,
prefix
=
''
,
index
=
None
,
space
=
0
):
position_space
=
makeDomain
(
position_space
)
power_space
=
list
(
position_space
)
power_space
[
space
]
=
PowerSpace
(
position_space
[
space
].
get_default_codomain
())
power_space
=
makeDomain
(
power_space
)
prefix
=
''
,
index
=
None
,
dofdex
=
None
):
if
dofdex
is
None
:
dofdex
=
np
.
full
(
self
.
_total_N
,
0
)
else
:
assert
len
(
dofdex
)
==
self
.
_total_N
N
=
max
(
dofdex
)
if
self
.
_total_N
>
1
:
space
=
1
position_space
=
makeDomain
((
UnstructuredDomain
(
self
.
_total_N
),
position_space
))
else
:
space
=
0
position_space
=
makeDomain
(
position_space
)
N
=
1
power_space
=
PowerSpace
(
position_space
[
space
].
get_default_codomain
())
prefix
=
str
(
prefix
)
#assert isinstance(position_space[space], (RGSpace, HPSpace, GLSpace)
#NOTE alternative to get auxilliary domain
#auxdom = ContractionOperator(position_space, space).domain
auxdom
=
makeDomain
(
tuple
(
dom
for
i
,
dom
in
enumerate
(
position_space
)
if
i
!=
space
))
fluct
=
_LognormalMomentMatching
(
fluctuations_mean
,
fluctuations_stddev
,
prefix
+
'fluctuations'
,
auxdom
)
#FIXME How should this work on domain tuples?
#fluct = fluct*self._azm.one_over()
N
)
#if copies:
# fluct = fluct*self._azm.one_over()
#else:
# #print(fluct.
# co = ContractionOperator(self._azm.target, None).adjoint
# fluct = (co @ fluct)*self._azm.one_over()
flex
=
_LognormalMomentMatching
(
flexibility_mean
,
flexibility_stddev
,
prefix
+
'flexibility'
,
auxdom
)
N
)
asp
=
_LognormalMomentMatching
(
asperity_mean
,
asperity_stddev
,
prefix
+
'asperity'
,
auxdom
)
N
)
avgsl
=
_normal
(
loglogavgslope_mean
,
loglogavgslope_stddev
,
prefix
+
'loglogavgslope'
,
auxdom
)
prefix
+
'loglogavgslope'
,
N
)
amp
=
_Amplitude
(
power_space
,
fluct
,
flex
,
asp
,
avgsl
,
prefix
+
'spectrum'
,
space
)
fluct
,
flex
,
asp
,
avgsl
,
self
.
_azm
,
prefix
+
'spectrum'
,
dofdex
)
if
index
is
not
None
:
self
.
_a
.
insert
(
index
,
amp
)
self
.
_position_spaces
.
insert
(
index
,
position_space
)
...
...
@@ -385,18 +438,20 @@ class CorrelatedFieldMaker:
self
.
_position_spaces
.
append
(
position_space
)
self
.
_spaces
.
append
(
space
)
def
finalize_from_op
(
self
,
zeromode
,
prefix
=
''
,
space
=
0
):
def
finalize_from_op
(
self
,
zeromode
,
prefix
=
''
):
assert
isinstance
(
zeromode
,
Operator
)
self
.
_azm
=
zeromode
hspace
=
[]
tuple
(
hspace
.
extend
(
tuple
(
get_default_codomain
(
dd
,
space
)))
for
dd
,
space
in
zip
(
self
.
_position_spaces
,
self
.
_spaces
))
hspace
=
makeDomain
(
hspace
)
zeroind
=
()
for
i
,
dd
in
enumerate
(
self
.
_position_spaces
):
zeroind
+=
(
slice
(
None
),)
*
(
self
.
_spaces
[
i
])
zeroind
+=
(
0
,)
*
len
(
dd
[
self
.
_spaces
[
i
]].
shape
)
zeroind
+=
(
slice
(
None
),)
*
(
len
(
dd
)
-
self
.
_spaces
[
i
]
-
1
)
n_amplitudes
=
len
(
self
.
_a
)
if
self
.
_total_N
>
1
:
hspace
=
makeDomain
([
UnstructuredDomain
(
self
.
_total_N
)]
+
[
dd
[
-
1
].
get_default_codomain
()
for
dd
in
self
.
_position_spaces
])
spaces
=
tuple
(
len
(
dd
)
for
dd
in
self
.
_position_spaces
)
spaces
=
1
+
np
.
cumsum
(
spaces
)
else
:
hspace
=
makeDomain
(
[
dd
[
-
1
].
get_default_codomain
()
for
dd
in
self
.
_position_spaces
])
spaces
=
tuple
(
range
(
n_amplitudes
))
zeroind
=
(
slice
(
None
),)
*
(
1
-
1
//
self
.
_total_N
)
+
(
0
,)
*
(
len
(
hspace
.
shape
)
-
1
+
1
//
self
.
_total_N
)
foo
=
np
.
ones
(
hspace
.
shape
)
foo
[
zeroind
]
=
0
...
...
@@ -405,13 +460,7 @@ class CorrelatedFieldMaker:
self
.
_azm
.
target
,
zeroind
).
adjoint
azm
=
Adder
(
from_global_data
(
hspace
,
foo
))
@
ZeroModeInserter
@
zeromode
n_amplitudes
=
len
(
self
.
_a
)
spaces
=
[
self
.
_spaces
[
0
],]
for
i
in
range
(
1
,
n_amplitudes
):
spaces
.
extend
(
[
len
(
self
.
_position_spaces
[
i
-
1
])
-
self
.
_spaces
[
i
-
1
]
+
self
.
_spaces
[
i
]])
spaces
=
list
(
np
.
cumsum
(
spaces
))
spaces
=
np
.
array
(
range
(
n_amplitudes
))
+
1
-
1
//
self
.
_total_N
ht
=
HarmonicTransformOperator
(
hspace
,
self
.
_position_spaces
[
0
][
self
.
_spaces
[
0
]],
space
=
spaces
[
0
])
...
...
@@ -426,6 +475,7 @@ class CorrelatedFieldMaker:
self
.
_a
[
i
].
target
[
self
.
_spaces
[
i
]],
space
=
spaces
[
i
]))
#breakpoint()
all_spaces
=
list
(
range
(
len
(
hspace
)))
a
=
ContractionOperator
(
pd
.
domain
,
spaces
[
1
:]).
adjoint
@
self
.
_a
[
0
]
for
i
in
range
(
1
,
n_amplitudes
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment