Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
d19a916d
Commit
d19a916d
authored
Apr 08, 2020
by
Martin Reinecke
Browse files
more
parent
393327d5
Changes
6
Show whitespace changes
Inline
Side-by-side
nifty6/field.py
View file @
d19a916d
...
@@ -20,10 +20,10 @@ import numpy as np
...
@@ -20,10 +20,10 @@ import numpy as np
from
.
import
utilities
from
.
import
utilities
from
.domain_tuple
import
DomainTuple
from
.domain_tuple
import
DomainTuple
from
.opera
tors.operator
import
Opera
tor
from
.opera
nd
import
Opera
nd
class
Field
(
Opera
tor
):
class
Field
(
Opera
nd
):
"""The discrete representation of a continuous field over multiple spaces.
"""The discrete representation of a continuous field over multiple spaces.
Stores data arrays and carries all the needed meta-information (i.e. the
Stores data arrays and carries all the needed meta-information (i.e. the
...
...
nifty6/linearization.py
View file @
d19a916d
...
@@ -19,10 +19,10 @@ import numpy as np
...
@@ -19,10 +19,10 @@ import numpy as np
from
.sugar
import
makeOp
from
.sugar
import
makeOp
from
.
import
utilities
from
.
import
utilities
from
.opera
tors.operator
import
Opera
tor
from
.opera
nd
import
Opera
nd
class
Linearization
(
Opera
tor
):
class
Linearization
(
Opera
nd
):
"""Let `A` be an operator and `x` a field. `Linearization` stores the value
"""Let `A` be an operator and `x` a field. `Linearization` stores the value
of the operator application (i.e. `A(x)`), the local Jacobian
of the operator application (i.e. `A(x)`), the local Jacobian
(i.e. `dA(x)/dx`) and, optionally, the local metric.
(i.e. `dA(x)/dx`) and, optionally, the local metric.
...
...
nifty6/multi_field.py
View file @
d19a916d
...
@@ -21,10 +21,10 @@ from . import utilities
...
@@ -21,10 +21,10 @@ from . import utilities
from
.field
import
Field
from
.field
import
Field
from
.multi_domain
import
MultiDomain
from
.multi_domain
import
MultiDomain
from
.domain_tuple
import
DomainTuple
from
.domain_tuple
import
DomainTuple
from
.opera
tors.operator
import
Opera
tor
from
.opera
nd
import
Opera
nd
class
MultiField
(
Opera
tor
):
class
MultiField
(
Opera
nd
):
def
__init__
(
self
,
domain
,
val
):
def
__init__
(
self
,
domain
,
val
):
"""The discrete representation of a continuous field over a sum space.
"""The discrete representation of a continuous field over a sum space.
...
...
nifty6/operators/linear_operator.py
View file @
d19a916d
...
@@ -169,8 +169,8 @@ class LinearOperator(Operator):
...
@@ -169,8 +169,8 @@ class LinearOperator(Operator):
raise
NotImplementedError
raise
NotImplementedError
def
__call__
(
self
,
x
):
def
__call__
(
self
,
x
):
"""Same as :meth:`times`"""
if
isinstance
(
x
,
Operator
):
from
..linearization
import
Linearization
return
self
@
x
if
x
.
jac
is
not
None
:
if
x
.
jac
is
not
None
:
return
x
.
new
(
self
(
x
.
fld
),
self
).
prepend_jac
(
x
.
jac
)
return
x
.
new
(
self
(
x
.
fld
),
self
).
prepend_jac
(
x
.
jac
)
if
x
.
val
is
not
None
:
if
x
.
val
is
not
None
:
...
...
nifty6/operators/operator.py
View file @
d19a916d
...
@@ -46,75 +46,6 @@ class Operator(metaclass=NiftyMeta):
...
@@ -46,75 +46,6 @@ class Operator(metaclass=NiftyMeta):
"""
"""
return
self
.
_target
return
self
.
_target
@
property
def
fld
(
self
):
"""The field associated with this object
For "pure" operators this is `None`. For Field-like objects this
is a `Field` or a `MultiField` matching the object's `target`.
Returns
-------
None or Field or MultiField : the field object
"""
return
None
@
property
def
val
(
self
):
"""The numerical value associated with this object
For "pure" operators this is `None`. For Field-like objects this
is a `numpy.ndarray` or a dictionary of `numpy.ndarray`s matching the
object's `target`.
Returns
-------
None or numpy.ndarray or dictionary of np.ndarrays : the numerical value
"""
return
None
@
property
def
jac
(
self
):
"""The Jacobian associated with this object
For "pure" operators this is `None`. For Field-like objects this
can be `None` (in which case the object is a constant), or it can be a
`LinearOperator` with `domain` and `target` matching the object's.
Returns
-------
None or LinearOperator : the Jacobian
Notes
-----
if `value` is None, this must be `None` as well!
"""
return
None
@
property
def
want_metric
(
self
):
"""Whether a metric should be computed for the full expression.
This is `False` whenever `jac` is `None`. In other cases it signals
that operators processing this object should compute the metric.
Returns
-------
bool : whether the metric should be computed
"""
return
False
@
property
def
metric
(
self
):
"""The metric associated with the object.
This is `None`, except when all the following conditions hold:
- `want_metric` is `True`
- `target` is the scalar domain
- the operator chain contained an operator which could compute the
metric
Returns
-------
None or LinearOperator : the metric
"""
return
None
@
staticmethod
@
staticmethod
def
_check_domain_equality
(
dom_op
,
dom_field
):
def
_check_domain_equality
(
dom_op
,
dom_field
):
if
dom_op
!=
dom_field
:
if
dom_op
!=
dom_field
:
...
@@ -240,7 +171,8 @@ class Operator(metaclass=NiftyMeta):
...
@@ -240,7 +171,8 @@ class Operator(metaclass=NiftyMeta):
def
_check_input
(
self
,
x
):
def
_check_input
(
self
,
x
):
from
.scaling_operator
import
ScalingOperator
from
.scaling_operator
import
ScalingOperator
if
not
(
isinstance
(
x
,
Operator
)
and
x
.
val
is
not
None
):
from
..operand
import
Operand
if
not
isinstance
(
x
,
Operand
):
raise
TypeError
raise
TypeError
if
x
.
jac
is
not
None
:
if
x
.
jac
is
not
None
:
if
not
isinstance
(
x
.
jac
,
ScalingOperator
):
if
not
isinstance
(
x
.
jac
,
ScalingOperator
):
...
@@ -250,13 +182,14 @@ class Operator(metaclass=NiftyMeta):
...
@@ -250,13 +182,14 @@ class Operator(metaclass=NiftyMeta):
self
.
_check_domain_equality
(
self
.
_domain
,
x
.
domain
)
self
.
_check_domain_equality
(
self
.
_domain
,
x
.
domain
)
def
__call__
(
self
,
x
):
def
__call__
(
self
,
x
):
if
not
isinstance
(
x
,
Operator
):
if
isinstance
(
x
,
Operator
):
return
self
@
x
from
..operand
import
Operand
if
not
isinstance
(
x
,
Operand
):
raise
TypeError
raise
TypeError
if
x
.
jac
is
not
None
:
if
x
.
jac
is
not
None
:
return
self
.
apply
(
x
.
trivial_jac
()).
prepend_jac
(
x
.
jac
)
return
self
.
apply
(
x
.
trivial_jac
()).
prepend_jac
(
x
.
jac
)
elif
x
.
val
is
not
None
:
return
self
.
apply
(
x
)
return
self
.
apply
(
x
)
return
self
@
x
def
ducktape
(
self
,
name
):
def
ducktape
(
self
,
name
):
from
.simple_linear_operators
import
ducktape
from
.simple_linear_operators
import
ducktape
...
...
nifty6/operators/scaling_operator.py
View file @
d19a916d
...
@@ -98,6 +98,9 @@ class ScalingOperator(EndomorphicOperator):
...
@@ -98,6 +98,9 @@ class ScalingOperator(EndomorphicOperator):
def
__call__
(
self
,
other
):
def
__call__
(
self
,
other
):
res
=
EndomorphicOperator
.
__call__
(
self
,
other
)
res
=
EndomorphicOperator
.
__call__
(
self
,
other
)
from
.operator
import
Operator
if
isinstance
(
res
,
Operator
):
return
res
if
np
.
isreal
(
self
.
_factor
)
and
self
.
_factor
>=
0
:
if
np
.
isreal
(
self
.
_factor
)
and
self
.
_factor
>=
0
:
if
other
.
jac
is
not
None
:
if
other
.
jac
is
not
None
:
if
other
.
metric
is
not
None
:
if
other
.
metric
is
not
None
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment