diff --git a/nifty/library/log_normal_wiener_filter_curvature.py b/nifty/library/log_normal_wiener_filter_curvature.py index 11442535fd95b9fb3cb040ffe7dfa582ec5ba57b..c7b0e4bd592971eeb51671e98747a6aead518444 100644 --- a/nifty/library/log_normal_wiener_filter_curvature.py +++ b/nifty/library/log_normal_wiener_filter_curvature.py @@ -1,7 +1,6 @@ from ..operators import EndomorphicOperator from ..utilities import memo from ..field import exp -from ..sugar import create_composed_fft_operator class LogNormalWienerFilterCurvature(EndomorphicOperator): diff --git a/nifty/library/noise_energy.py b/nifty/library/noise_energy.py index 105039e526b436610e287f8de820c3bc0586a370..66acb8f5de26360850d6053dc8b417446d969814 100644 --- a/nifty/library/noise_energy.py +++ b/nifty/library/noise_energy.py @@ -6,10 +6,10 @@ from ..utilities import memo class NoiseEnergy(Energy): - def __init__(self, position, d, m, D, t, FFT, Instrument, nonlinearity, alpha, q, Projection, - samples=3, sample_list=None, inverter=None): + def __init__(self, position, d, m, D, t, FFT, Instrument, nonlinearity, + alpha, q, Projection, samples=3, sample_list=None, + inverter=None): super(NoiseEnergy, self).__init__(position=position.copy()) - dummy = self.position.norm() self.m = m self.D = D self.d = d @@ -39,13 +39,11 @@ class NoiseEnergy(Energy): self.inverter = inverter def at(self, position): - return self.__class__(position, self.d, self.m, - self.D, self.t, self.FFT, self.Instrument, self.nonlinearity, - self.alpha, - self.q, - self.Projection, - sample_list=self.sample_list, - samples=self.samples, inverter=self.inverter) + return self.__class__( + position, self.d, self.m, self.D, self.t, self.FFT, + self.Instrument, self.nonlinearity, self.alpha, self.q, + self.Projection, sample_list=self.sample_list, + samples=self.samples, inverter=self.inverter) @property @memo @@ -53,8 +51,10 @@ class NoiseEnergy(Energy): likelihood = 0. for sample in self.sample_list: likelihood += self._likelihood(sample) - return ((likelihood / float(len(self.sample_list))) + 0.5 * self.one.vdot(self.position) - + (self.alpha - self.one).vdot(self.position) + self.q.vdot(exp(-self.position))) + return ((likelihood / float(len(self.sample_list))) + + 0.5 * self.one.vdot(self.position) + + (self.alpha - self.one).vdot(self.position) + + self.q.vdot(exp(-self.position))) def _likelihood(self, m): residual = self.d - \ @@ -69,8 +69,9 @@ class NoiseEnergy(Energy): likelihood_gradient = Field(self.position.domain, val=0.) for sample in self.sample_list: likelihood_gradient += self._likelihood_gradient(sample) - return (likelihood_gradient / float(len(self.sample_list)) - + 0.5 * self.one + (self.alpha - self.one) - self.q * (exp(-self.position))) + return (likelihood_gradient / float(len(self.sample_list)) + + 0.5 * self.one + (self.alpha - self.one) - + self.q * (exp(-self.position))) def _likelihood_gradient(self, m): residual = self.d - \