diff --git a/ChangeLog.md b/ChangeLog.md index 0b38a6a38afb2b3c38fa02f46174f15f4d3c17a7..12a7cab50d27d62c30c14109735e6ad107b68021 100644 --- a/ChangeLog.md +++ b/ChangeLog.md @@ -78,8 +78,8 @@ A new posterior approximation scheme, called geometric Variational Inference that it uses (non-linear) geoVI samples instead of (linear) MGVI samples. `GeoMetricKL` can be configured such that it reduces to `MetricGaussianKL`. `GeoMetricKL` is now used in `demos/getting_started_3.py` and a visual -comparison to MGVI can be found in `demos/vi_visualized.py`. For further details -see (<https://arxiv.org/abs/2105.10470>). +comparison to MGVI can be found in `demos/variational_inference_visualized.py`. +For further details see (<https://arxiv.org/abs/2105.10470>). LikelihoodOperator diff --git a/docs/source/ift.rst b/docs/source/ift.rst index 150808288835c8a9bfdf92b4e8248ab2ce124ba7..f123c102be561c944c9567d817fa606bb4e9f2b1 100644 --- a/docs/source/ift.rst +++ b/docs/source/ift.rst @@ -132,7 +132,7 @@ NIFTy takes advantage of this formulation in several ways: 3) The response can be non-linear, e.g. :math:`{R'(s)=R \exp(A\,\xi)}`, see `demos/getting_started_2.py`. -4) The amplitude operator may depend on further parameters, e.g. :math:`A=A(\tau)=e^{2\tau}` represents an amplitude operator with a positive definite, unknown spectrum. +4) The amplitude operator may depend on further parameters, e.g. :math:`A=A(\tau)=F\, \widehat{e^\tau}` represents an amplitude operator with a positive definite, unknown spectrum. The log-amplitude field :math:`{\tau}` is modelled with the help of an integrated Wiener process in order to impose some (user-defined degree of) spectral smoothness. 5) NIFTy calculates the gradient of the information Hamiltonian and the Fisher information metric with respect to all unknown parameters, here :math:`{\xi}` and :math:`{\tau}`, by automatic differentiation.