diff --git a/README.md b/README.md
index 3ff5092d55473d482e241ecd47fea77e4cbd49d0..d840b7e7e9754e28d75e99c4548d79754467868b 100644
--- a/README.md
+++ b/README.md
@@ -4,7 +4,7 @@ NIFTy - Numerical Information Field Theory
 [![coverage report](https://gitlab.mpcdf.mpg.de/ift/NIFTy/badges/NIFTy_5/coverage.svg)](https://gitlab.mpcdf.mpg.de/ift/NIFTy/commits/NIFTy_5)
 
 **NIFTy** project homepage:
-[http://ift.pages.mpcdf.de/NIFTy](http://ift.pages.mpcdf.de/NIFTy)
+[http://ift.pages.mpcdf.de/nifty](http://ift.pages.mpcdf.de/nifty)
 
 Summary
 -------
@@ -116,7 +116,7 @@ following command in the repository root:
 ### First Steps
 
 For a quick start, you can browse through the [informal
-introduction](http://ift.pages.mpcdf.de/NIFTy/code.html) or
+introduction](http://ift.pages.mpcdf.de/nifty/code.html) or
 dive into NIFTy by running one of the demonstrations, e.g.:
 
     python3 demos/getting_started_1.py
@@ -130,7 +130,7 @@ phrase such as the following:
 > "Some of the results in this publication have been derived using the
 > NIFTy package [(https://gitlab.mpcdf.mpg.de/ift/NIFTy)](https://gitlab.mpcdf.mpg.de/ift/NIFTy)"
 
-and a citation to one of the [publications](http://ift.pages.mpcdf.de/NIFTy/citations.html).
+and a citation to one of the [publications](http://ift.pages.mpcdf.de/nifty/citations.html).
 
 
 ### Licensing terms
diff --git a/docs/source/ift.rst b/docs/source/ift.rst
index cafd0decb22a6dd31b76e3696470d206ab108915..66acad68569d205d29946b3670a97060cca9bce7 100644
--- a/docs/source/ift.rst
+++ b/docs/source/ift.rst
@@ -4,7 +4,7 @@ IFT -- Information Field Theory
 Theoretical Background
 ----------------------
 
-`Information Field Theory <http://www.mpa-garching.mpg.de/ift/>`_ [1]_  (IFT) is information theory, the logic of reasoning under uncertainty, applied to fields.
+`Information Field Theory <https://www.mpa-garching.mpg.de/ift/>`_ [1]_  (IFT) is information theory, the logic of reasoning under uncertainty, applied to fields.
 A field can be any quantity defined over some space, e.g. the air temperature over Europe, the magnetic field strength in the Milky Way, or the matter density in the Universe.
 IFT describes how data and knowledge can be used to infer field properties.
 Mathematically it is a statistical field theory and exploits many of the tools developed for such.
@@ -21,15 +21,15 @@ NIFTy comes with reimplemented MAP and VI estimators.
 
 .. tip:: *In-a-nutshell introductions to information field theory* can be found in [2]_, [3]_, [4]_, and [5]_, with the latter probably being the most didactical.
 
-.. [1] T.A. Enßlin et al. (2009), "Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis", PhysRevD.80.105005, 09/2009; `[arXiv:0806.3474] <http://www.arxiv.org/abs/0806.3474>`_
+.. [1] T.A. Enßlin et al. (2009), "Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis", PhysRevD.80.105005, 09/2009; `[arXiv:0806.3474] <https://www.arxiv.org/abs/0806.3474>`_
 
-.. [2] T.A. Enßlin (2013), "Information field theory", proceedings of MaxEnt 2012 -- the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering; AIP Conference Proceedings, Volume 1553, Issue 1, p.184; `[arXiv:1301.2556] <http://arxiv.org/abs/1301.2556>`_
+.. [2] T.A. Enßlin (2013), "Information field theory", proceedings of MaxEnt 2012 -- the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering; AIP Conference Proceedings, Volume 1553, Issue 1, p.184; `[arXiv:1301.2556] <https://arxiv.org/abs/1301.2556>`_
 
-.. [3] T.A. Enßlin (2014), "Astrophysical data analysis with information field theory", AIP Conference Proceedings, Volume 1636, Issue 1, p.49; `[arXiv:1405.7701] <http://arxiv.org/abs/1405.7701>`_
+.. [3] T.A. Enßlin (2014), "Astrophysical data analysis with information field theory", AIP Conference Proceedings, Volume 1636, Issue 1, p.49; `[arXiv:1405.7701] <https://arxiv.org/abs/1405.7701>`_
 
 .. [4] Wikipedia contributors (2018), `"Information field theory" <https://en.wikipedia.org/w/index.php?title=Information_field_theory&oldid=876731720>`_, Wikipedia, The Free Encyclopedia.
 
-.. [5] T.A. Enßlin (2019), "Information theory for fields", accepted by Annalen der Physik; `[DOI] <https://doi.org/10.1002/andp.201800127>`_, `[arXiv:1804.03350] <http://arxiv.org/abs/1804.03350>`_
+.. [5] T.A. Enßlin (2019), "Information theory for fields", accepted by Annalen der Physik; `[DOI] <https://doi.org/10.1002/andp.201800127>`_, `[arXiv:1804.03350] <https://arxiv.org/abs/1804.03350>`_
 
 
 
diff --git a/docs/source/index.rst b/docs/source/index.rst
index cb661581a7beb83a8598f2675e5a360a71567073..dcda398fef346de69e32f88c7aa3f625a22b0b7c 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -27,7 +27,7 @@ Contents
 
    ift
    volume
-   Gallery <http://wwwmpa.mpa-garching.mpg.de/~ensslin/nifty-gallery/index.html>
+   Gallery <https://wwwmpa.mpa-garching.mpg.de/~ensslin/nifty-gallery/index.html>
    installation
    code
    citations
diff --git a/nifty5/domains/lm_space.py b/nifty5/domains/lm_space.py
index 4c224a6dec96764f18bc27019a1f88b2d33630b8..f138e3e8803b09119cdb63f8efb038e6009f1377 100644
--- a/nifty5/domains/lm_space.py
+++ b/nifty5/domains/lm_space.py
@@ -96,7 +96,7 @@ class LMSpace(StructuredDomain):
     def _kernel(x, sigma):
         # cf. "All-sky convolution for polarimetry experiments"
         # by Challinor et al.
-        # http://arxiv.org/abs/astro-ph/0008228
+        # https://arxiv.org/abs/astro-ph/0008228
         from ..sugar import exp
         return exp((x+1.) * x * (-0.5*sigma*sigma))
 
diff --git a/nifty5/utilities.py b/nifty5/utilities.py
index 899f9989bdd494f1b689b2b68dbd8d467bb1ddda..1b0102a3ba9766b7f27be601590cf35395cef108 100644
--- a/nifty5/utilities.py
+++ b/nifty5/utilities.py
@@ -143,7 +143,7 @@ def memo(f):
 class _DocStringInheritor(type):
     """
     A variation on
-    http://groups.google.com/group/comp.lang.python/msg/26f7b4fcb4d66c95
+    https://groups.google.com/group/comp.lang.python/msg/26f7b4fcb4d66c95
     by Paul McGuire
     """
     def __new__(meta, name, bases, clsdict):