Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
bbeba660
Commit
bbeba660
authored
Dec 09, 2019
by
Philipp Arras
Browse files
Remove temporary files used during development
parent
ee029099
Pipeline
#65159
passed with stages
in 12 minutes and 50 seconds
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
demos/find_amplitude_parameters.py
deleted
100644 → 0
View file @
ee029099
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
# Author: Philipp Arras
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
import
numpy
as
np
import
nifty6
as
ift
import
matplotlib.pyplot
as
plt
def
_default_pspace
(
dom
):
return
ift
.
PowerSpace
(
dom
.
get_default_codomain
())
if
__name__
==
'__main__'
:
np
.
random
.
seed
(
42
)
fa
=
ift
.
CorrelatedFieldMaker
.
make
(
10
,
0.1
,
''
)
n_samps
=
20
slope_means
=
[
-
2
,
-
3
]
fa
.
add_fluctuations
(
ift
.
RGSpace
(
128
,
0.1
),
10
,
2
,
1
,
1e-6
,
2
,
1e-6
,
slope_means
[
0
],
0.2
,
'spatial'
)
# fa.add_fluctuations(_default_pspace(ift.RGSpace((128, 64))), 10, 2, 1,
# 1e-6, 2, 1e-6, slope_means[0], 0.2, 'spatial')
fa
.
add_fluctuations
(
ift
.
RGSpace
(
32
),
3
,
5
,
1
,
1e-6
,
2
,
1e-6
,
slope_means
[
1
],
1
,
'freq'
)
correlated_field
=
fa
.
finalize
()
amplitudes
=
fa
.
normalized_amplitudes
plt
.
style
.
use
(
'seaborn-notebook'
)
tgt
=
correlated_field
.
target
if
len
(
tgt
.
shape
)
==
1
:
fig
,
axes
=
plt
.
subplots
(
nrows
=
1
,
ncols
=
2
)
fig
.
set_size_inches
(
20
,
10
)
else
:
fig
,
axes
=
plt
.
subplots
(
nrows
=
3
,
ncols
=
3
)
fig
.
set_size_inches
(
20
,
16
)
axs
=
(
ax
for
ax
in
axes
.
ravel
())
for
ii
,
aa
in
enumerate
(
amplitudes
):
ax
=
next
(
axs
)
pspec
=
aa
**
2
ax
.
set_xscale
(
'log'
)
ax
.
set_yscale
(
'log'
)
for
_
in
range
(
n_samps
):
fld
=
pspec
(
ift
.
from_random
(
'normal'
,
pspec
.
domain
))
klengths
=
fld
.
domain
[
0
].
k_lengths
ycoord
=
fld
.
val_rw
()
ycoord
[
0
]
=
ycoord
[
1
]
ax
.
plot
(
klengths
,
ycoord
,
alpha
=
1
)
ymin
,
ymax
=
ax
.
get_ylim
()
color
=
plt
.
rcParams
[
'axes.prop_cycle'
].
by_key
()[
'color'
][
0
]
lbl
=
'Mean slope (k^{})'
.
format
(
2
*
slope_means
[
ii
])
for
fac
in
np
.
linspace
(
np
.
log
(
ymin
),
np
.
log
(
ymax
**
2
/
ymin
)):
xs
=
np
.
linspace
(
np
.
amin
(
klengths
[
1
:]),
np
.
amax
(
klengths
[
1
:]))
ys
=
xs
**
(
2
*
slope_means
[
ii
])
*
np
.
exp
(
fac
)
xs
=
np
.
insert
(
xs
,
0
,
0
)
ys
=
np
.
insert
(
ys
,
0
,
ys
[
0
])
ax
.
plot
(
xs
,
ys
,
zorder
=
1
,
color
=
color
,
linewidth
=
0.3
,
label
=
lbl
)
lbl
=
None
ax
.
set_ylim
([
ymin
,
ymax
])
ax
.
set_xlim
([
None
,
np
.
amax
(
klengths
)])
ax
.
legend
()
if
len
(
tgt
.
shape
)
==
2
:
foo
=
[]
for
ax
in
axs
:
pos
=
ift
.
from_random
(
'normal'
,
correlated_field
.
domain
)
fld
=
correlated_field
(
pos
).
val
foo
.
append
((
ax
,
fld
))
mi
,
ma
=
np
.
inf
,
-
np
.
inf
for
_
,
fld
in
foo
:
mi
=
min
([
mi
,
np
.
amin
(
fld
)])
ma
=
max
([
ma
,
np
.
amax
(
fld
)])
nxdx
,
nydy
=
tgt
.
shape
if
len
(
tgt
)
==
2
:
nxdx
*=
tgt
[
0
].
distances
[
0
]
nydy
*=
tgt
[
1
].
distances
[
0
]
else
:
nxdx
*=
tgt
[
0
].
distances
[
0
]
nydy
*=
tgt
[
0
].
distances
[
1
]
for
ax
,
fld
in
foo
:
im
=
ax
.
imshow
(
fld
.
T
,
extent
=
[
0
,
nxdx
,
0
,
nydy
],
aspect
=
'auto'
,
origin
=
'lower'
,
vmin
=
mi
,
vmax
=
ma
)
fig
.
colorbar
(
im
,
ax
=
axes
.
ravel
().
tolist
())
elif
len
(
tgt
.
shape
)
==
1
:
ax
=
next
(
axs
)
flds
=
[]
for
_
in
range
(
n_samps
):
pos
=
ift
.
from_random
(
'normal'
,
correlated_field
.
domain
)
ax
.
plot
(
correlated_field
(
pos
).
val
)
plt
.
savefig
(
'correlated_fields.png'
)
plt
.
close
()
demos/multi_amplitudes_consistency.py
deleted
100644 → 0
View file @
ee029099
import
nifty6
as
ift
import
numpy
as
np
def
testAmplitudesConsistency
(
seed
,
sspace
):
def
stats
(
op
,
samples
):
sc
=
ift
.
StatCalculator
()
for
s
in
samples
:
sc
.
add
(
op
(
s
.
extract
(
op
.
domain
)))
return
sc
.
mean
.
val
,
sc
.
var
.
sqrt
().
val
np
.
random
.
seed
(
seed
)
offset_std
=
.
1
intergated_fluct_std0
=
.
003
intergated_fluct_std1
=
0.1
nsam
=
1000
fsspace
=
ift
.
RGSpace
((
12
,),
(
0.4
,))
fa
=
ift
.
CorrelatedFieldMaker
.
make
(
offset_std
,
1E-8
,
''
)
fa
.
add_fluctuations
(
sspace
,
intergated_fluct_std0
,
1E-8
,
1.1
,
2.
,
2.1
,
.
5
,
-
2
,
1.
,
'spatial'
)
fa
.
add_fluctuations
(
fsspace
,
intergated_fluct_std1
,
1E-8
,
3.1
,
1.
,
.
5
,
.
1
,
-
4
,
1.
,
'freq'
)
op
=
fa
.
finalize
()
samples
=
[
ift
.
from_random
(
'normal'
,
op
.
domain
)
for
_
in
range
(
nsam
)]
tot_flm
,
_
=
stats
(
fa
.
total_fluctuation
,
samples
)
offset_std
,
_
=
stats
(
fa
.
amplitude_total_offset
,
samples
)
intergated_fluct_std0
,
_
=
stats
(
fa
.
average_fluctuation
(
0
),
samples
)
intergated_fluct_std1
,
_
=
stats
(
fa
.
average_fluctuation
(
1
),
samples
)
slice_fluct_std0
,
_
=
stats
(
fa
.
slice_fluctuation
(
0
),
samples
)
slice_fluct_std1
,
_
=
stats
(
fa
.
slice_fluctuation
(
1
),
samples
)
sams
=
[
op
(
s
)
for
s
in
samples
]
fluct_total
=
fa
.
total_fluctuation_realized
(
sams
)
fluct_space
=
fa
.
average_fluctuation_realized
(
sams
,
0
)
fluct_freq
=
fa
.
average_fluctuation_realized
(
sams
,
1
)
zm_std_mean
=
fa
.
offset_amplitude_realized
(
sams
)
sl_fluct_space
=
fa
.
slice_fluctuation_realized
(
sams
,
0
)
sl_fluct_freq
=
fa
.
slice_fluctuation_realized
(
sams
,
1
)
print
(
"Expected offset Std: "
+
str
(
offset_std
))
print
(
"Estimated offset Std: "
+
str
(
zm_std_mean
))
print
(
"Expected integrated fluct. space Std: "
+
str
(
intergated_fluct_std0
))
print
(
"Estimated integrated fluct. space Std: "
+
str
(
fluct_space
))
print
(
"Expected integrated fluct. frequency Std: "
+
str
(
intergated_fluct_std1
))
print
(
"Estimated integrated fluct. frequency Std: "
+
str
(
fluct_freq
))
print
(
"Expected slice fluct. space Std: "
+
str
(
slice_fluct_std0
))
print
(
"Estimated slice fluct. space Std: "
+
str
(
sl_fluct_space
))
print
(
"Expected slice fluct. frequency Std: "
+
str
(
slice_fluct_std1
))
print
(
"Estimated slice fluct. frequency Std: "
+
str
(
sl_fluct_freq
))
print
(
"Expected total fluct. Std: "
+
str
(
tot_flm
))
print
(
"Estimated total fluct. Std: "
+
str
(
fluct_total
))
np
.
testing
.
assert_allclose
(
offset_std
,
zm_std_mean
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std0
,
fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std1
,
fluct_freq
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
tot_flm
,
fluct_total
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
slice_fluct_std0
,
sl_fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
slice_fluct_std1
,
sl_fluct_freq
,
rtol
=
0.5
)
fa
=
ift
.
CorrelatedFieldMaker
.
make
(
offset_std
,
.
1
,
''
)
fa
.
add_fluctuations
(
fsspace
,
intergated_fluct_std1
,
1.
,
3.1
,
1.
,
.
5
,
.
1
,
-
4
,
1.
,
'freq'
)
m
=
3.
x
=
fa
.
moment_slice_to_average
(
m
)
fa
.
add_fluctuations
(
sspace
,
x
,
1.5
,
1.1
,
2.
,
2.1
,
.
5
,
-
2
,
1.
,
'spatial'
,
0
)
op
=
fa
.
finalize
()
em
,
estd
=
stats
(
fa
.
slice_fluctuation
(
0
),
samples
)
print
(
"Forced slice fluct. space Std: "
+
str
(
m
))
print
(
"Expected slice fluct. Std: "
+
str
(
em
))
np
.
testing
.
assert_allclose
(
m
,
em
,
rtol
=
0.5
)
assert
op
.
target
[
0
]
==
sspace
assert
op
.
target
[
1
]
==
fsspace
# Move to tests
# FIXME This test fails but it is not relevant for the final result
# assert_allclose(ampl(from_random('normal', ampl.domain)).val[0], vol) or 1??
# End move to tests
# move to tests
# assert_allclose(
# smooth(from_random('normal', smooth.domain)).val[0:2], 0)
# end move to tests
for
seed
in
[
1
,
42
]:
for
sp
in
[
ift
.
RGSpace
((
32
,
64
),
(
1.1
,
0.3
)),
ift
.
HPSpace
(
32
),
ift
.
GLSpace
(
32
)
]:
testAmplitudesConsistency
(
seed
,
sp
)
demos/newamplitudes.py
deleted
100644 → 0
View file @
ee029099
import
nifty6
as
ift
import
numpy
as
np
np
.
random
.
seed
(
42
)
sspace
=
ift
.
RGSpace
((
128
,))
fa
=
ift
.
CorrelatedFieldMaker
.
make
(
10
,
0.1
,
''
)
fa
.
add_fluctuations
(
sspace
,
10
,
2
,
1
,
1e-6
,
2
,
1e-6
,
-
2
,
1e-6
,
'spatial'
)
op
=
fa
.
finalize
()
A
=
fa
.
amplitude
cstpos
=
ift
.
from_random
(
'normal'
,
op
.
domain
)
p1
,
p2
=
[
ift
.
Plot
()
for
_
in
range
(
2
)]
lst1
=
[]
skys1
,
skys2
=
[],
[]
for
_
in
range
(
8
):
pos
=
ift
.
from_random
(
'normal'
,
op
.
domain
)
foo
=
ift
.
MultiField
.
union
([
cstpos
,
pos
.
extract
(
A
.
domain
)])
skys2
.
append
(
op
(
foo
))
sky
=
op
(
pos
)
skys1
.
append
(
sky
)
lst1
.
append
(
A
.
force
(
pos
))
for
pp
,
ll
in
[(
p1
,
skys1
),
(
p2
,
skys2
)]:
mi
,
ma
=
None
,
None
if
False
:
mi
,
ma
=
np
.
inf
,
-
np
.
inf
for
ss
in
ll
:
mi
=
min
([
mi
,
np
.
amin
(
ss
.
val
)])
ma
=
max
([
ma
,
np
.
amax
(
ss
.
val
)])
for
ss
in
ll
:
pp
.
add
(
ss
,
zmin
=
mi
,
zmax
=
ma
)
p1
.
add
(
lst1
)
p2
.
add
(
lst1
)
p1
.
output
(
name
=
'full.png'
)
p2
.
output
(
name
=
'xi_fixed.png'
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment