Commit b905b9fd authored by Lukas Platz's avatar Lukas Platz

Move _Normal and _LognormalMomentMatching to operators.normal_operators

parent 15693c86
......@@ -52,6 +52,7 @@ from .operators.energy_operators import (
BernoulliEnergy, StandardHamiltonian, AveragedEnergy, QuadraticFormOperator,
Squared2NormOperator, StudentTEnergy, VariableCovarianceGaussianEnergy)
from .operators.convolution_operators import FuncConvolutionOperator
from .operators.normal_operators import NormalTransform, LognormalTransform
from .probing import probe_with_posterior_samples, probe_diagonal, \
StatCalculator, approximation2endo
......
......@@ -36,49 +36,12 @@ from ..operators.harmonic_operators import HarmonicTransformOperator
from ..operators.linear_operator import LinearOperator
from ..operators.operator import Operator
from ..operators.simple_linear_operators import ducktape
from ..operators.normal_operators import NormalTransform, LognormalTransform
from ..probing import StatCalculator
from ..sugar import full, makeDomain, makeField, makeOp
from .. import utilities
def _reshaper(x, N):
x = np.asfarray(x)
if x.shape in [(), (1,)]:
return np.full(N, x) if N != 0 else x.reshape(())
elif x.shape == (N,):
return x
else:
raise TypeError("Shape of parameters cannot be interpreted")
def _lognormal_moments(mean, sig, N=0):
if N == 0:
mean, sig = np.asfarray(mean), np.asfarray(sig)
else:
mean, sig = (_reshaper(param, N) for param in (mean, sig))
if not np.all(mean > 0):
raise ValueError("mean must be greater 0; got {!r}".format(mean))
if not np.all(sig > 0):
raise ValueError("sig must be greater 0; got {!r}".format(sig))
logsig = np.sqrt(np.log1p((sig/mean)**2))
logmean = np.log(mean) - logsig**2/2
return logmean, logsig
def _normal(mean, sig, key, N=0):
if N == 0:
domain = DomainTuple.scalar_domain()
mean, sig = np.asfarray(mean), np.asfarray(sig)
return Adder(makeField(domain, mean)) @ (
sig * ducktape(domain, None, key))
domain = UnstructuredDomain(N)
mean, sig = (_reshaper(param, N) for param in (mean, sig))
return Adder(makeField(domain, mean)) @ (DiagonalOperator(
makeField(domain, sig)) @ ducktape(domain, None, key))
def _log_k_lengths(pspace):
"""Log(k_lengths) without zeromode"""
return np.log(pspace.k_lengths[1:])
......@@ -120,29 +83,6 @@ def _total_fluctuation_realized(samples):
return np.sqrt(res if np.isscalar(res) else res.val)
class _LognormalMomentMatching(Operator):
def __init__(self, mean, sig, key, N_copies):
key = str(key)
logmean, logsig = _lognormal_moments(mean, sig, N_copies)
self._mean = mean
self._sig = sig
op = _normal(logmean, logsig, key, N_copies).ptw("exp")
self._domain, self._target = op.domain, op.target
self.apply = op.apply
self._repr_str = f"_LognormalMomentMatching: " + op.__repr__()
@property
def mean(self):
return self._mean
@property
def std(self):
return self._sig
def __repr__(self):
return self._repr_str
class _SlopeRemover(EndomorphicOperator):
def __init__(self, domain, space=0):
self._domain = makeDomain(domain)
......@@ -441,10 +381,8 @@ class CorrelatedFieldMaker:
elif len(dofdex) != total_N:
raise ValueError("length of dofdex needs to match total_N")
N = max(dofdex) + 1 if total_N > 0 else 0
zm = _LognormalMomentMatching(offset_std_mean,
offset_std_std,
prefix + 'zeromode',
N)
zm = LognormalTransform(offset_std_mean, offset_std_std,
prefix + 'zeromode', N)
if total_N > 0:
zm = _Distributor(dofdex, zm.target, UnstructuredDomain(total_N)) @ zm
return CorrelatedFieldMaker(offset_mean, zm, prefix, total_N)
......@@ -532,17 +470,15 @@ class CorrelatedFieldMaker:
prefix = str(prefix)
# assert isinstance(target_subdomain[space], (RGSpace, HPSpace, GLSpace)
fluct = _LognormalMomentMatching(fluctuations_mean,
fluctuations_stddev,
self._prefix + prefix + 'fluctuations',
N)
flex = _LognormalMomentMatching(flexibility_mean, flexibility_stddev,
self._prefix + prefix + 'flexibility',
N)
asp = _LognormalMomentMatching(asperity_mean, asperity_stddev,
self._prefix + prefix + 'asperity', N)
avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
self._prefix + prefix + 'loglogavgslope', N)
fluct = LognormalTransform(fluctuations_mean, fluctuations_stddev,
self._prefix + prefix + 'fluctuations', N)
flex = LognormalTransform(flexibility_mean, flexibility_stddev,
self._prefix + prefix + 'flexibility', N)
asp = LognormalTransform(asperity_mean, asperity_stddev,
self._prefix + prefix + 'asperity', N)
avgsl = NormalTransform(loglogavgslope_mean, loglogavgslope_stddev,
self._prefix + prefix + 'loglogavgslope', N)
amp = _Amplitude(PowerSpace(harmonic_partner), fluct, flex, asp, avgsl,
self._azm, target_subdomain[-1].total_volume,
self._prefix + prefix + 'spectrum', dofdex)
......
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2020 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
import numpy as np
from ..domain_tuple import DomainTuple
from ..domains.unstructured_domain import UnstructuredDomain
from ..operators.operator import Operator
from ..operators.adder import Adder
from ..operators.simple_linear_operators import ducktape
from ..operators.diagonal_operator import DiagonalOperator
from ..sugar import makeField
def _reshaper(x, N):
x = np.asfarray(x)
if x.shape in [(), (1, )]:
return np.full(N, x) if N != 0 else x.reshape(())
elif x.shape == (N, ):
return x
else:
raise TypeError("Shape of parameters cannot be interpreted")
def NormalTransform(mean, sigma, key, N=0):
"""Opchain that transforms standard normally distributed values to
normally distributed values with given mean an standard deviation.
Parameters:
-----------
mean : float
Mean of the field
sigma : float
Standard deviation of the field
key : string
Name of the operators domain (Multidomain)
N_copies : integer
If == 0, target will be a scalar field.
If >= 1, target will be an
:class:`~nifty6.unstructured_domain.UnstructuredDomain`.
"""
if N == 0:
domain = DomainTuple.scalar_domain()
mean, sigma = np.asfarray(mean), np.asfarray(sigma)
mean_adder = Adder(makeField(domain, mean))
return mean_adder @ (sigma * ducktape(domain, None, key))
domain = UnstructuredDomain(N)
mean, sigma = (_reshaper(param, N) for param in (mean, sigma))
mean_adder = Adder(makeField(domain, mean))
sigma_op = DiagonalOperator(makeField(domain, sigma))
return mean_adder @ sigma_op @ ducktape(domain, None, key)
def _lognormal_moments(mean, sig, N=0):
if N == 0:
mean, sig = np.asfarray(mean), np.asfarray(sig)
else:
mean, sig = (_reshaper(param, N) for param in (mean, sig))
if not np.all(mean > 0):
raise ValueError("mean must be greater 0; got {!r}".format(mean))
if not np.all(sig > 0):
raise ValueError("sig must be greater 0; got {!r}".format(sig))
logsig = np.sqrt(np.log1p((sig / mean)**2))
logmean = np.log(mean) - logsig**2 / 2
return logmean, logsig
class LognormalTransform(Operator):
"""Opchain that transforms standard normally distributed values to
log-normally distributed values with given mean an standard deviation.
Parameters:
-----------
mean : float
Mean of the field
sigma : float
Standard deviation of the field
key : string
Name of the domain
N_copies : integer
If == 0, target will be a scalar field.
If >= 1, target will be an
:class:`~nifty6.unstructured_domain.UnstructuredDomain`.
"""
def __init__(self, mean, sigma, key, N_copies):
key = str(key)
logmean, logsigma = _lognormal_moments(mean, sigma, N_copies)
self._mean = mean
self._sigma = sigma
op = NormalTransform(logmean, logsigma, key, N_copies).ptw("exp")
self._domain, self._target = op.domain, op.target
self.apply = op.apply
self._repr_str = f"LognormalTransform: " + op.__repr__()
@property
def mean(self):
return self._mean
@property
def std(self):
return self._sigma
def __repr__(self):
return self._repr_str
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment