diff --git a/demos/getting_started_1.py b/demos/getting_started_1.py index 0426e3eea3d06d31a6f28c9ea251d089f468b333..f84d5d3b150c1a875fca1b8777366214b9dd64be 100644 --- a/demos/getting_started_1.py +++ b/demos/getting_started_1.py @@ -101,15 +101,12 @@ if __name__ == '__main__': # Masking operator to model that parts of the field have not been observed mask = ift.Field.from_global_data(position_space, mask) Mask = ift.DiagonalOperator(mask) -<<<<<<< HEAD - # The response operator consists out of + # The response operator consists of # - an harmonic transform (to get to image space) # - the application of the mask # - the removal of geometric information -======= - # Operators can be composed either with paranthesis ->>>>>>> NIFTy_5 + # Operators can be composed either with parenthesis R = GR(Mask(HT)) # or with @ R = GR @ Mask @ HT @@ -125,17 +122,10 @@ if __name__ == '__main__': MOCK_NOISE = N.draw_sample() data = R(MOCK_SIGNAL) + MOCK_NOISE -<<<<<<< HEAD # Build inverse propagator D and information source j - D_inv = R.adjoint(N.inverse(R)) + S.inverse + D_inv = R.adjoint @ N.inverse @ R + S.inverse j = R.adjoint_times(N.inverse_times(data)) # Make D_inv invertible (via Conjugate Gradient) -======= - # Build propagator D and information source j - j = R.adjoint_times(N.inverse_times(data)) - D_inv = R.adjoint @ N.inverse @ R + S.inverse - # Make it invertible ->>>>>>> NIFTy_5 IC = ift.GradientNormController(iteration_limit=500, tol_abs_gradnorm=1e-3) D = ift.InversionEnabler(D_inv, IC, approximation=S.inverse).inverse