Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
b3bf2377
Commit
b3bf2377
authored
Feb 21, 2018
by
Martin Reinecke
Browse files
doc tweaks
parent
7992fd7b
Pipeline
#25284
passed with stages
in 15 minutes and 36 seconds
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
nifty4/field.py
View file @
b3bf2377
...
@@ -44,8 +44,6 @@ class Field(object):
...
@@ -44,8 +44,6 @@ class Field(object):
dtype : type
dtype : type
A numpy.type. Most common are float and complex.
A numpy.type. Most common are float and complex.
copy : bool
"""
"""
def
__init__
(
self
,
domain
=
None
,
val
=
None
,
dtype
=
None
,
copy
=
False
,
def
__init__
(
self
,
domain
=
None
,
val
=
None
,
dtype
=
None
,
copy
=
False
,
...
@@ -77,6 +75,20 @@ class Field(object):
...
@@ -77,6 +75,20 @@ class Field(object):
@
staticmethod
@
staticmethod
def
full
(
domain
,
val
,
dtype
=
None
):
def
full
(
domain
,
val
,
dtype
=
None
):
"""Creates a Field with a given domain, filled with a constant value.
Parameters
----------
domain : Domain, tuple of Domain, or DomainTuple
domain of the new Field
val : float/complex/int scalar
fill value. Data type of the field is inferred from val.
Returns
-------
Field
the newly created field
"""
if
not
np
.
isscalar
(
val
):
if
not
np
.
isscalar
(
val
):
raise
TypeError
(
"val must be a scalar"
)
raise
TypeError
(
"val must be a scalar"
)
return
Field
(
DomainTuple
.
make
(
domain
),
val
,
dtype
)
return
Field
(
DomainTuple
.
make
(
domain
),
val
,
dtype
)
...
@@ -95,6 +107,20 @@ class Field(object):
...
@@ -95,6 +107,20 @@ class Field(object):
@
staticmethod
@
staticmethod
def
full_like
(
field
,
val
,
dtype
=
None
):
def
full_like
(
field
,
val
,
dtype
=
None
):
"""Creates a Field from a template, filled with a constant value.
Parameters
----------
field : Field
the template field, from which the domain is inferred
val : float/complex/int scalar
fill value. Data type of the field is inferred from val.
Returns
-------
Field
the newly created field
"""
if
not
isinstance
(
field
,
Field
):
if
not
isinstance
(
field
,
Field
):
raise
TypeError
(
"field must be of Field type"
)
raise
TypeError
(
"field must be of Field type"
)
return
Field
.
full
(
field
.
_domain
,
val
,
dtype
)
return
Field
.
full
(
field
.
_domain
,
val
,
dtype
)
...
...
nifty4/library/wiener_filter_curvature.py
View file @
b3bf2377
...
@@ -31,11 +31,11 @@ class WienerFilterCurvature(EndomorphicOperator):
...
@@ -31,11 +31,11 @@ class WienerFilterCurvature(EndomorphicOperator):
Parameters
Parameters
----------
----------
R: LinearOperator
R
: LinearOperator
The response operator of the Wiener filter measurement.
The response operator of the Wiener filter measurement.
N: EndomorphicOperator
N
: EndomorphicOperator
The noise covariance.
The noise covariance.
S:
Endomorphic
Operator
S
:
Diagonal
Operator
The prior signal covariance
The prior signal covariance
inverter : Minimizer
inverter : Minimizer
The minimizer to use during numerical inversion
The minimizer to use during numerical inversion
...
...
nifty4/library/wiener_filter_energy.py
View file @
b3bf2377
...
@@ -28,17 +28,19 @@ class WienerFilterEnergy(Energy):
...
@@ -28,17 +28,19 @@ class WienerFilterEnergy(Energy):
Parameters
Parameters
----------
----------
position: Field
position
: Field
The current map in harmonic space.
The current map in harmonic space.
d
:
Field
d
:
Field
the data
the data
R: LinearOperator
R
: LinearOperator
The response operator, description of the measurement process. It needs
The response operator, description of the measurement process. It needs
to map from harmonic signal space to data space.
to map from harmonic signal space to data space.
N: EndomorphicOperator
N
: EndomorphicOperator
The noise covariance in data space.
The noise covariance in data space.
S: EndomorphicOperator
S
: EndomorphicOperator
The prior signal covariance in harmonic space.
The prior signal covariance in harmonic space.
inverter : Minimizer
the minimization strategy to use for operator inversion
"""
"""
def
__init__
(
self
,
position
,
d
,
R
,
N
,
S
,
inverter
,
_j
=
None
):
def
__init__
(
self
,
position
,
d
,
R
,
N
,
S
,
inverter
,
_j
=
None
):
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment