Commit b2e21a64 authored by Philipp Arras's avatar Philipp Arras
Browse files

Add Reimar's criterion to NewtonCG

parent 3c5a2a01
Pipeline #52390 failed with stages
in 5 minutes and 29 seconds
......@@ -59,7 +59,7 @@ from .probing import probe_with_posterior_samples, probe_diagonal, \
from .minimization.line_search import LineSearch
from .minimization.iteration_controllers import (
IterationController, GradientNormController, DeltaEnergyController,
GradInfNormController, AbsDeltaEnergyController)
from .minimization.minimizer import Minimizer
from .minimization.conjugate_gradient import ConjugateGradient
from .minimization.nonlinear_cg import NonlinearCG
......@@ -19,7 +19,6 @@ import numpy as np
from ..logger import logger
from .conjugate_gradient import ConjugateGradient
from .iteration_controllers import GradientNormController
from .line_search import LineSearch
from .minimizer import Minimizer
from .quadratic_energy import QuadraticEnergy
......@@ -46,7 +45,7 @@ class DescentMinimizer(Minimizer):
self._controller = controller
self.line_searcher = line_searcher
def __call__(self, energy, preconditioner=None):
def __call__(self, energy):
"""Performs the minimization of the provided Energy functional.
......@@ -82,7 +81,7 @@ class DescentMinimizer(Minimizer):
# compute a step length that reduces energy.value sufficiently
new_energy, success = self.line_searcher.perform_line_search(
energy=energy, pk=self.get_descent_direction(energy),
energy=energy, pk=self.get_descent_direction(energy, f_k_minus_1),
if not success:
......@@ -163,12 +162,15 @@ class NewtonCG(DescentMinimizer):
super(NewtonCG, self).__init__(controller=controller,
def get_descent_direction(self, energy):
g = energy.gradient
maggrad = abs(g).sum()
termcond = np.min([0.5, np.sqrt(maggrad)]) * maggrad
ic = GradientNormController(tol_abs_gradnorm=termcond, p=1)
e = QuadraticEnergy(0*energy.position, energy.metric, g)
def get_descent_direction(self, energy, f_k_minus_1):
from .iteration_controllers import AbsDeltaEnergyController, GradientNormController
if f_k_minus_1 is None:
ic = GradientNormController(iteration_limit=1)
alpha = 0.1
ediff = alpha*(f_k_minus_1 - energy.value)
ic = AbsDeltaEnergyController(ediff, iteration_limit=200, name=' Internal', convergence_level=1)
e = QuadraticEnergy(0*energy.position, energy.metric, energy.gradient)
e, conv = ConjugateGradient(ic, nreset=np.inf)(e)
if conv == ic.ERROR:
raise RuntimeError
......@@ -276,3 +276,70 @@ class DeltaEnergyController(IterationController):
return self.CONVERGED
return self.CONTINUE
class AbsDeltaEnergyController(IterationController):
"""An iteration controller checking (mainly) the energy change from one
iteration to the next.
tol_rel_deltaE : float
If the difference between the last and current energies divided by
the current energy is below this value, the convergence counter will
be increased in this iteration.
convergence_level : int, default=1
The number which the convergence counter must reach before the
iteration is considered to be converged
iteration_limit : int, optional
The maximum number of iterations that will be carried out.
name : str, optional
if supplied, this string and some diagnostic information will be
printed after every iteration
def __init__(self, deltaE, convergence_level=1,
iteration_limit=None, name=None):
self._deltaE = deltaE
self._convergence_level = convergence_level
self._iteration_limit = iteration_limit
self._name = name
def start(self, energy):
self._itcount = -1
self._ccount = 0
self._Eold = 0.
return self.check(energy)
def check(self, energy):
self._itcount += 1
inclvl = False
Eval = energy.value
diff = abs(self._Eold-Eval)
if self._itcount > 0:
if diff < self._deltaE:
inclvl = True
self._Eold = Eval
if inclvl:
self._ccount += 1
self._ccount = max(0, self._ccount-1)
# report
if self._name is not None:
"{}: Iteration #{} energy={:.6E} diff={:.6E} crit={:.6E}"
.format(self._name, self._itcount, Eval, diff, self._deltaE))
# Are we done?
if self._iteration_limit is not None:
if self._itcount >= self._iteration_limit:
"{} Iteration limit reached. Assuming convergence"
.format("" if self._name is None else self._name+": "))
return self.CONVERGED
if self._ccount >= self._convergence_level:
return self.CONVERGED
return self.CONTINUE
......@@ -138,6 +138,7 @@ def probe_diagonal(op, nprobes, random_type="pm1"):
def approximation2endo(op, nsamples):
print('Calculate preconditioner')
sc = StatCalculator()
for _ in range(nsamples):
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment