Commit afc5daa7 authored by Martin Reinecke's avatar Martin Reinecke
Browse files

more compatibility to numpy

parent 1d0e22b7
......@@ -23,79 +23,84 @@ from .field import Field
__all__ = ['cos', 'sin', 'cosh', 'sinh', 'tan', 'tanh', 'arccos', 'arcsin',
'arccosh', 'arcsinh', 'arctan', 'arctanh', 'sqrt', 'exp', 'log',
'conjugate']
'conj', 'conjugate']
def _math_helper(x, function):
if isinstance(x, Field):
return Field(domain=x.domain, val=function(x.val))
def _math_helper(x, function, out):
if not isinstance(x, Field):
raise TypeError("This function only accepts Field objects.")
if out is not None:
if not isinstance(out, Field) or x.domain!=out.domain:
raise ValueError("Bad 'out' argument")
function(x.val, out=out.val)
return out
else:
return function(np.asarray(x))
return Field(domain=x.domain, val=function(x.val))
def cos(x):
return _math_helper(x, np.cos)
def cos(x, out=None):
return _math_helper(x, np.cos, out)
def sin(x):
return _math_helper(x, np.sin)
def sin(x, out=None):
return _math_helper(x, np.sin, out)
def cosh(x):
return _math_helper(x, np.cosh)
def cosh(x, out=None):
return _math_helper(x, np.cosh, out)
def sinh(x):
return _math_helper(x, np.sinh)
def sinh(x, out=None):
return _math_helper(x, np.sinh, out)
def tan(x):
return _math_helper(x, np.tan)
def tan(x, out=None):
return _math_helper(x, np.tan, out)
def tanh(x):
return _math_helper(x, np.tanh)
def tanh(x, out=None):
return _math_helper(x, np.tanh, out)
def arccos(x):
return _math_helper(x, np.arccos)
def arccos(x, out=None):
return _math_helper(x, np.arccos, out)
def arcsin(x):
return _math_helper(x, np.arcsin)
def arcsin(x, out=None):
return _math_helper(x, np.arcsin, out)
def arccosh(x):
return _math_helper(x, np.arccosh)
def arccosh(x, out=None):
return _math_helper(x, np.arccosh, out)
def arcsinh(x):
return _math_helper(x, np.arcsinh)
def arcsinh(x, out=None):
return _math_helper(x, np.arcsinh, out)
def arctan(x):
return _math_helper(x, np.arctan)
def arctan(x, out=None):
return _math_helper(x, np.arctan, out)
def arctanh(x):
return _math_helper(x, np.arctanh)
def arctanh(x, out=None):
return _math_helper(x, np.arctanh, out)
def sqrt(x):
return _math_helper(x, np.sqrt)
def sqrt(x, out=None):
return _math_helper(x, np.sqrt, out)
def exp(x):
return _math_helper(x, np.exp)
def exp(x, out=None):
return _math_helper(x, np.exp, out)
def log(x):
return _math_helper(x, np.log)
def log(x, out=None):
return _math_helper(x, np.log, out)
def conjugate(x):
return _math_helper(x, np.conjugate)
def conjugate(x, out=None):
return _math_helper(x, np.conjugate, out)
def conj(x):
return _math_helper(x, np.conjugate)
def conj(x, out=None):
return _math_helper(x, np.conj, out)
......@@ -109,7 +109,7 @@ class LaplaceOperator(EndomorphicOperator):
ret[sl_l] = deriv
ret[prefix + (-1,)] = 0.
ret[sl_r] -= deriv
ret /= sqrt(dposc)
ret /= np.sqrt(dposc)
ret[prefix + (slice(None, 2),)] = 0.
ret[prefix + (-1,)] = 0.
return Field(self.domain, val=ret).weight(power=-0.5, spaces=spaces)
......@@ -131,7 +131,7 @@ class LaplaceOperator(EndomorphicOperator):
dpos = self._dpos.reshape((1,)*axis + (nval-1,))
dposc = self._dposc.reshape((1,)*axis + (nval,))
y = x.copy().weight(power=0.5).val
y /= sqrt(dposc)
y /= np.sqrt(dposc)
y[prefix + (slice(None, 2),)] = 0.
y[prefix + (-1,)] = 0.
deriv = (y[sl_r]-y[sl_l])/dpos # defined between points
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment