Commit afac0ec8 authored by Reimar H Leike's avatar Reimar H Leike
Browse files

changed Inverse Gamma likelihood to use the parameter convention from...

changed Inverse Gamma likelihood to use the parameter convention from wikipedia thus making it more general. Also added documentation
parent 3aaa3a70
...@@ -58,7 +58,7 @@ def make_adjust_variances(a, ...@@ -58,7 +58,7 @@ def make_adjust_variances(a,
""" """
d = a*xi d = a*xi
d = (d.conjugate()*d).real d = (d.conjugate()*d).real/2
n = len(samples) n = len(samples)
if n > 0: if n > 0:
d_eval = 0. d_eval = 0.
...@@ -201,23 +201,41 @@ class PoissonianEnergy(EnergyOperator): ...@@ -201,23 +201,41 @@ class PoissonianEnergy(EnergyOperator):
class InverseGammaLikelihood(EnergyOperator): class InverseGammaLikelihood(EnergyOperator):
""" """
FIXME This describes the negative log-likelihood of the inverse gamma distribution.
It negative log-pdf(x) is given by
sum_i (alpha_i+1)*ln(x_i) + beta_i/x_i
This is the likelihood for the variance x=S_k given data beta = 0.5 |s_k|^2 where the Field s is known to have the covariance S_k.
beta : Field
beta parameter of the inverse gamma distribution
alpha : Scalar, Field, optional
alpha parameter of the inverse gamma distribution
""" """
def __init__(self, d): def __init__(self, beta, alpha=-0.5):
if not isinstance(d, Field): if not isinstance(beta, Field):
raise TypeError raise TypeError
self._d = d self._beta = beta
self._domain = DomainTuple.make(d.domain) if np.isscalar(alpha):
alpha = Field.from_local_data(beta.domain, np.full(beta.local_data.shape, alpha+1))
elif not isinstance(alpha, Field):
raise TypeError
self._alphap1 = alpha+1
self._domain = DomainTuple.make(beta.domain)
def apply(self, x): def apply(self, x):
self._check_input(x) self._check_input(x)
res = 0.5*(x.log().sum() + (1./x).vdot(self._d)) res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta)
if not isinstance(x, Linearization): if not isinstance(x, Linearization):
return Field.scalar(res) return Field.scalar(res)
if not x.want_metric: if not x.want_metric:
return res return res
metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2))) metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2)))
return res.add_metric(metric) return res.add_metric(metric)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment