Commit add893a1 authored by Martin Reinecke's avatar Martin Reinecke

add Scipy's conjugate gradient algorithm

parent 55c9fea0
......@@ -113,3 +113,46 @@ def L_BFGS_B(ftol, gtol, maxiter, maxcor=10, disp=False, bounds=None):
options = {"ftol": ftol, "gtol": gtol, "maxiter": maxiter,
"maxcor": maxcor, "disp": disp}
return ScipyMinimizer("L-BFGS-B", options, False, bounds)
class ScipyCG(Minimizer):
def __init__(self, tol, maxiter):
super(ScipyCG, self).__init__()
if not dobj.is_numpy():
raise NotImplementedError
self._tol = tol
self._maxiter = maxiter
def __call__(self, energy, preconditioner=None):
from scipy.sparse.linalg import LinearOperator as scipy_linop, cg
from .quadratic_energy import QuadraticEnergy
if not isinstance(energy, QuadraticEnergy):
raise ValueError("need a quadratic energy for CG")
def toNdarray(fld):
return fld.to_global_data().reshape(-1)
def toField(arr, dom):
return Field.from_global_data(dom, arr.reshape(dom.shape))
class mymatvec(object):
def __init__(self, op):
self._op = op
def __call__(self, inp):
return toNdarray(self._op(toField(inp, self._op.domain)))
op = energy._A
b = toNdarray(energy._b)
sx = toNdarray(energy.position)
sci_op = scipy_linop(shape=(op.domain.size,,
prec_op = None
if preconditioner is not None:
prec_op = scipy_linop(shape=(op.domain.size,,
res, stat = cg(sci_op, b, x0=sx, tol=self._tol, M=prec_op,
stat = (IterationController.CONVERGED if stat >= 0 else
return, op.domain)), stat
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment