Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
ab97b34a
Commit
ab97b34a
authored
Jan 29, 2018
by
Philipp Arras
Browse files
All energy test run through now :)
parent
43b247bb
Pipeline
#24156
failed with stage
in 3 minutes and 59 seconds
Changes
9
Pipelines
1
Show whitespace changes
Inline
Side-by-side
nifty4/library/log_normal_wiener_filter_energy.py
View file @
ab97b34a
...
...
@@ -43,7 +43,7 @@ class LogNormalWienerFilterEnergy(Energy):
The prior signal covariance in harmonic space.
"""
def
__init__
(
self
,
position
,
d
,
R
,
N
,
S
,
inverter
,
ff
t
=
None
):
def
__init__
(
self
,
position
,
d
,
R
,
N
,
S
,
inverter
,
h
t
=
None
):
super
(
LogNormalWienerFilterEnergy
,
self
).
__init__
(
position
=
position
)
self
.
d
=
d
self
.
R
=
R
...
...
@@ -51,21 +51,21 @@ class LogNormalWienerFilterEnergy(Energy):
self
.
S
=
S
self
.
_inverter
=
inverter
if
ff
t
is
None
:
self
.
_
ff
t
=
create_composed_fft_operator
(
self
.
S
.
domain
,
if
h
t
is
None
:
self
.
_
h
t
=
create_composed_fft_operator
(
self
.
S
.
domain
,
all_to
=
'position'
)
else
:
self
.
_
ff
t
=
ff
t
self
.
_
h
t
=
h
t
self
.
_expp_sspace
=
exp
(
self
.
_
ff
t
(
self
.
position
))
self
.
_expp_sspace
=
exp
(
self
.
_
h
t
(
self
.
position
))
Sp
=
self
.
S
.
inverse_times
(
self
.
position
)
expp
=
self
.
_
ff
t
.
adjoint_times
(
self
.
_expp_sspace
)
expp
=
self
.
_
h
t
.
adjoint_times
(
self
.
_expp_sspace
)
Rexppd
=
self
.
R
(
expp
)
-
self
.
d
NRexppd
=
self
.
N
.
inverse_times
(
Rexppd
)
self
.
_value
=
0.5
*
(
self
.
position
.
vdot
(
Sp
)
+
Rexppd
.
vdot
(
NRexppd
))
exppRNRexppd
=
self
.
_
ff
t
.
adjoint_times
(
self
.
_expp_sspace
*
self
.
_
ff
t
(
self
.
R
.
adjoint_times
(
NRexppd
)))
exppRNRexppd
=
self
.
_
h
t
.
adjoint_times
(
self
.
_expp_sspace
*
self
.
_
h
t
(
self
.
R
.
adjoint_times
(
NRexppd
)))
self
.
_gradient
=
Sp
+
exppRNRexppd
def
at
(
self
,
position
):
...
...
nifty4/library/noise_energy.py
View file @
ab97b34a
...
...
@@ -20,9 +20,11 @@ from .. import Field, exp
from
..operators.diagonal_operator
import
DiagonalOperator
from
..minimization.energy
import
Energy
# TODO Take only residual_sample_list as argument
class
NoiseEnergy
(
Energy
):
def
__init__
(
self
,
position
,
d
,
m
,
D
,
t
,
FFT
,
Instrument
,
nonlinearity
,
def
__init__
(
self
,
position
,
d
,
m
,
D
,
t
,
ht
,
Instrument
,
nonlinearity
,
alpha
,
q
,
Projection
,
samples
=
3
,
sample_list
=
None
,
inverter
=
None
):
super
(
NoiseEnergy
,
self
).
__init__
(
position
=
position
)
...
...
@@ -32,7 +34,7 @@ class NoiseEnergy(Energy):
self
.
N
=
DiagonalOperator
(
diagonal
=
exp
(
self
.
position
))
self
.
t
=
t
self
.
samples
=
samples
self
.
FFT
=
FFT
self
.
ht
=
ht
self
.
Instrument
=
Instrument
self
.
nonlinearity
=
nonlinearity
...
...
@@ -53,7 +55,7 @@ class NoiseEnergy(Energy):
def
at
(
self
,
position
):
return
self
.
__class__
(
position
,
self
.
d
,
self
.
m
,
self
.
D
,
self
.
t
,
self
.
FFT
,
position
,
self
.
d
,
self
.
m
,
self
.
D
,
self
.
t
,
self
.
ht
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
alpha
,
self
.
q
,
self
.
Projection
,
sample_list
=
self
.
sample_list
,
samples
=
self
.
samples
,
inverter
=
self
.
inverter
)
...
...
@@ -63,7 +65,7 @@ class NoiseEnergy(Energy):
for
sample
in
self
.
sample_list
:
residual
=
self
.
d
-
\
self
.
Instrument
(
self
.
nonlinearity
(
self
.
FFT
.
adjoint_times
(
self
.
power
*
sample
)))
self
.
ht
(
self
.
power
*
sample
)))
lh
=
0.5
*
residual
.
vdot
(
self
.
N
.
inverse_times
(
residual
))
grad
=
-
0.5
*
self
.
N
.
inverse_times
(
residual
.
conjugate
()
*
residual
)
if
likelihood_gradient
is
None
:
...
...
@@ -74,7 +76,7 @@ class NoiseEnergy(Energy):
likelihood_gradient
+=
grad
likelihood
=
((
likelihood
/
float
(
len
(
self
.
sample_list
)))
+
0.5
*
self
.
position
.
integrate
()
+
0.5
*
self
.
position
.
sum
()
+
(
self
.
alpha
-
1.
).
vdot
(
self
.
position
)
+
self
.
q
.
vdot
(
exp
(
-
self
.
position
)))
likelihood_gradient
=
(
...
...
nifty4/library/nonlinear_power_curvature.py
View file @
ab97b34a
...
...
@@ -20,12 +20,12 @@ from ..operators.inversion_enabler import InversionEnabler
from
.response_operators
import
LinearizedPowerResponse
def
NonlinearPowerCurvature
(
position
,
FFT
,
Instrument
,
nonlinearity
,
def
NonlinearPowerCurvature
(
position
,
ht
,
Instrument
,
nonlinearity
,
Projection
,
N
,
T
,
sample_list
,
inverter
):
result
=
None
for
sample
in
sample_list
:
LinearizedResponse
=
LinearizedPowerResponse
(
Instrument
,
nonlinearity
,
FFT
,
Projection
,
position
,
sample
)
Instrument
,
nonlinearity
,
ht
,
Projection
,
position
,
sample
)
op
=
LinearizedResponse
.
adjoint
*
N
.
inverse
*
LinearizedResponse
result
=
op
if
result
is
None
else
result
+
op
result
=
result
*
(
1.
/
len
(
sample_list
))
+
T
...
...
nifty4/library/nonlinear_power_energy.py
View file @
ab97b34a
...
...
@@ -51,7 +51,7 @@ class NonlinearPowerEnergy(Energy):
default : 3
"""
def
__init__
(
self
,
position
,
d
,
N
,
m
,
D
,
FFT
,
Instrument
,
nonlinearity
,
def
__init__
(
self
,
position
,
d
,
N
,
m
,
D
,
ht
,
Instrument
,
nonlinearity
,
Projection
,
sigma
=
0.
,
samples
=
3
,
sample_list
=
None
,
inverter
=
None
):
super
(
NonlinearPowerEnergy
,
self
).
__init__
(
position
)
...
...
@@ -61,7 +61,7 @@ class NonlinearPowerEnergy(Energy):
self
.
N
=
N
self
.
T
=
SmoothnessOperator
(
domain
=
self
.
position
.
domain
[
0
],
strength
=
sigma
,
logarithmic
=
True
)
self
.
FFT
=
FFT
self
.
ht
=
ht
self
.
Instrument
=
Instrument
self
.
nonlinearity
=
nonlinearity
self
.
Projection
=
Projection
...
...
@@ -80,7 +80,7 @@ class NonlinearPowerEnergy(Energy):
def
at
(
self
,
position
):
return
self
.
__class__
(
position
,
self
.
d
,
self
.
N
,
self
.
m
,
self
.
D
,
self
.
FFT
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
ht
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
Projection
,
sigma
=
self
.
_sigma
,
samples
=
len
(
self
.
sample_list
),
sample_list
=
self
.
sample_list
,
...
...
@@ -91,10 +91,10 @@ class NonlinearPowerEnergy(Energy):
for
sample
in
self
.
sample_list
:
residual
=
self
.
d
-
\
self
.
Instrument
(
self
.
nonlinearity
(
self
.
FFT
.
adjoint_times
(
self
.
power
*
sample
)))
self
.
ht
(
self
.
power
*
sample
)))
lh
=
0.5
*
residual
.
vdot
(
self
.
N
.
inverse_times
(
residual
))
LinR
=
LinearizedPowerResponse
(
self
.
Instrument
,
self
.
nonlinearity
,
self
.
FFT
,
self
.
Projection
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
ht
,
self
.
Projection
,
self
.
position
,
sample
)
grad
=
LinR
.
adjoint_times
(
self
.
N
.
inverse_times
(
residual
))
if
likelihood_gradient
is
None
:
...
...
@@ -122,6 +122,6 @@ class NonlinearPowerEnergy(Energy):
@
memo
def
curvature
(
self
):
return
NonlinearPowerCurvature
(
self
.
position
,
self
.
FFT
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
position
,
self
.
ht
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
Projection
,
self
.
N
,
self
.
T
,
self
.
sample_list
,
inverter
=
self
.
inverter
)
nifty4/library/nonlinear_wiener_filter_energy.py
View file @
ab97b34a
...
...
@@ -23,19 +23,19 @@ from .response_operators import LinearizedSignalResponse
class
NonlinearWienerFilterEnergy
(
Energy
):
def
__init__
(
self
,
position
,
d
,
Instrument
,
nonlinearity
,
FFT
,
power
,
N
,
S
,
def
__init__
(
self
,
position
,
d
,
Instrument
,
nonlinearity
,
ht
,
power
,
N
,
S
,
inverter
=
None
):
super
(
NonlinearWienerFilterEnergy
,
self
).
__init__
(
position
=
position
)
self
.
d
=
d
self
.
Instrument
=
Instrument
self
.
nonlinearity
=
nonlinearity
self
.
FFT
=
FFT
self
.
ht
=
ht
self
.
power
=
power
self
.
LinearizedResponse
=
\
LinearizedSignalResponse
(
Instrument
,
nonlinearity
,
FFT
,
power
,
LinearizedSignalResponse
(
Instrument
,
nonlinearity
,
ht
,
power
,
self
.
position
)
position_map
=
FFT
.
adjoint_times
(
self
.
power
*
self
.
position
)
position_map
=
ht
(
self
.
power
*
self
.
position
)
residual
=
d
-
Instrument
(
nonlinearity
(
position_map
))
self
.
N
=
N
self
.
S
=
S
...
...
@@ -48,7 +48,7 @@ class NonlinearWienerFilterEnergy(Energy):
def
at
(
self
,
position
):
return
self
.
__class__
(
position
,
self
.
d
,
self
.
Instrument
,
self
.
nonlinearity
,
self
.
FFT
,
self
.
power
,
self
.
N
,
self
.
nonlinearity
,
self
.
ht
,
self
.
power
,
self
.
N
,
self
.
S
,
inverter
=
self
.
inverter
)
@
property
...
...
nifty4/library/response_operators.py
View file @
ab97b34a
...
...
@@ -19,14 +19,15 @@
from
..field
import
exp
def
LinearizedSignalResponse
(
Instrument
,
nonlinearity
,
FFT
,
power
,
m
):
position
=
FFT
.
adjoint_times
(
power
*
m
)
def
LinearizedSignalResponse
(
Instrument
,
nonlinearity
,
ht
,
power
,
m
):
position
=
ht
(
power
*
m
)
return
(
Instrument
*
nonlinearity
.
derivative
(
position
)
*
FFT
.
adjoin
t
*
power
)
h
t
*
power
)
def
LinearizedPowerResponse
(
Instrument
,
nonlinearity
,
FFT
,
Projection
,
t
,
m
):
def
LinearizedPowerResponse
(
Instrument
,
nonlinearity
,
ht
,
Projection
,
t
,
m
):
power
=
exp
(
0.5
*
t
)
position
=
FFT
.
adjoint_times
(
Projection
.
adjoint_times
(
power
)
*
m
)
position
=
ht
(
Projection
.
adjoint_times
(
power
)
*
m
)
linearization
=
nonlinearity
.
derivative
(
position
)
return
(
0.5
*
Instrument
*
linearization
*
FFT
.
adjoin
t
*
m
*
return
(
0.5
*
Instrument
*
linearization
*
h
t
*
m
*
Projection
.
adjoint
*
power
)
test/test_energies/test_map.py
View file @
ab97b34a
...
...
@@ -25,13 +25,15 @@ from numpy.testing import assert_allclose
# TODO Add also other space types
# TODO Set tolerances to reasonable values
# TODO Set tolerances
and eps
to reasonable values
class
Map_Energy_Tests
(
unittest
.
TestCase
):
@
expand
(
product
([
ift
.
RGSpace
(
64
,
distances
=
.
789
),
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)]))
def
testLinearMap
(
self
,
space
):
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)],
[
4
,
78
,
23
]))
def
testLinearMap
(
self
,
space
,
seed
):
np
.
random
.
seed
(
seed
)
dim
=
len
(
space
.
shape
)
hspace
=
space
.
get_default_codomain
()
ht
=
ift
.
HarmonicTransformOperator
(
hspace
,
target
=
space
)
...
...
@@ -54,7 +56,7 @@ class Map_Energy_Tests(unittest.TestCase):
direction
=
ift
.
Field
.
from_random
(
'normal'
,
hspace
)
direction
/=
np
.
sqrt
(
direction
.
var
())
eps
=
1e-
10
eps
=
1e-
7
s1
=
s0
+
eps
*
direction
IC
=
ift
.
GradientNormController
(
...
...
@@ -72,12 +74,14 @@ class Map_Energy_Tests(unittest.TestCase):
a
=
(
energy1
.
value
-
energy0
.
value
)
/
eps
b
=
energy0
.
gradient
.
vdot
(
direction
)
tol
=
1e-
3
tol
=
1e-
5
assert_allclose
(
a
,
b
,
rtol
=
tol
,
atol
=
tol
)
@
expand
(
product
([
ift
.
RGSpace
(
64
,
distances
=
.
789
),
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)]))
def
testLognormalMap
(
self
,
space
):
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)],
[
4
,
78
,
23
]))
def
testLognormalMap
(
self
,
space
,
seed
):
np
.
random
.
seed
(
seed
)
dim
=
len
(
space
.
shape
)
hspace
=
space
.
get_default_codomain
()
ht
=
ift
.
HarmonicTransformOperator
(
hspace
,
target
=
space
)
...
...
@@ -101,7 +105,7 @@ class Map_Energy_Tests(unittest.TestCase):
direction
=
ift
.
Field
.
from_random
(
'normal'
,
hspace
)
direction
/=
np
.
sqrt
(
direction
.
var
())
eps
=
1e-
10
eps
=
1e-
6
sh1
=
sh0
+
eps
*
direction
IC
=
ift
.
GradientNormController
(
...
...
@@ -119,17 +123,19 @@ class Map_Energy_Tests(unittest.TestCase):
a
=
(
energy1
.
value
-
energy0
.
value
)
/
eps
b
=
energy0
.
gradient
.
vdot
(
direction
)
tol
=
1e-
2
tol
=
1e-
3
assert_allclose
(
a
,
b
,
rtol
=
tol
,
atol
=
tol
)
@
expand
(
product
([
ift
.
RGSpace
(
64
,
distances
=
.
789
),
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)],
[
ift
.
library
.
Exponential
,
ift
.
library
.
Linear
]))
def
testNonlinearMap
(
self
,
space
,
nonlinearity
):
[
ift
.
library
.
Exponential
,
ift
.
library
.
Linear
],
[
4
,
78
,
23
]))
def
testNonlinearMap
(
self
,
space
,
nonlinearity
,
seed
):
np
.
random
.
seed
(
seed
)
f
=
nonlinearity
()
dim
=
len
(
space
.
shape
)
fft
=
ift
.
FFTOperator
(
space
)
h
space
=
f
ft
.
target
[
0
]
hspace
=
space
.
get_default_codomain
(
)
h
t
=
i
ft
.
HarmonicTransformOperator
(
hspace
,
target
=
space
)
binbounds
=
ift
.
PowerSpace
.
useful_binbounds
(
hspace
,
logarithmic
=
False
)
pspace
=
ift
.
PowerSpace
(
hspace
,
binbounds
=
binbounds
)
P
=
ift
.
PowerProjectionOperator
(
domain
=
hspace
,
power_space
=
pspace
)
...
...
@@ -139,7 +145,7 @@ class Map_Energy_Tests(unittest.TestCase):
pspec
=
ift
.
PS_field
(
pspace
,
pspec
)
A
=
P
.
adjoint_times
(
ift
.
sqrt
(
pspec
))
n
=
ift
.
Field
.
from_random
(
domain
=
space
,
random_type
=
'normal'
)
s
=
fft
.
inverse_times
(
xi0
*
A
)
s
=
ht
(
xi0
*
A
)
diag
=
ift
.
Field
.
ones
(
space
)
*
10
R
=
ift
.
DiagonalOperator
(
diag
)
diag
=
ift
.
Field
.
ones
(
space
)
...
...
@@ -148,16 +154,16 @@ class Map_Energy_Tests(unittest.TestCase):
direction
=
ift
.
Field
.
from_random
(
'normal'
,
hspace
)
direction
/=
np
.
sqrt
(
direction
.
var
())
eps
=
1e-
10
eps
=
1e-
7
xi1
=
xi0
+
eps
*
direction
S
=
ift
.
create_power_operator
(
hspace
,
power_spectrum
=
lambda
k
:
1.
)
energy0
=
ift
.
library
.
NonlinearWienerFilterEnergy
(
position
=
xi0
,
d
=
d
,
Instrument
=
R
,
nonlinearity
=
f
,
FFT
=
ff
t
,
power
=
A
,
N
=
N
,
S
=
S
)
position
=
xi0
,
d
=
d
,
Instrument
=
R
,
nonlinearity
=
f
,
ht
=
h
t
,
power
=
A
,
N
=
N
,
S
=
S
)
energy1
=
ift
.
library
.
NonlinearWienerFilterEnergy
(
position
=
xi1
,
d
=
d
,
Instrument
=
R
,
nonlinearity
=
f
,
FFT
=
ff
t
,
power
=
A
,
N
=
N
,
S
=
S
)
position
=
xi1
,
d
=
d
,
Instrument
=
R
,
nonlinearity
=
f
,
ht
=
h
t
,
power
=
A
,
N
=
N
,
S
=
S
)
a
=
(
energy1
.
value
-
energy0
.
value
)
/
eps
b
=
energy0
.
gradient
.
vdot
(
direction
)
tol
=
1e-
2
tol
=
1e-
4
assert_allclose
(
a
,
b
,
rtol
=
tol
,
atol
=
tol
)
test/test_energies/test_noise.py
View file @
ab97b34a
...
...
@@ -30,12 +30,14 @@ from numpy.testing import assert_allclose
class
Noise_Energy_Tests
(
unittest
.
TestCase
):
@
expand
(
product
([
ift
.
RGSpace
(
64
,
distances
=
.
789
),
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)],
[
ift
.
library
.
Exponential
,
ift
.
library
.
Linear
]))
def
testNoise
(
self
,
space
,
nonlinearity
):
[
ift
.
library
.
Exponential
,
ift
.
library
.
Linear
],
[
23
,
131
,
32
]))
def
testNoise
(
self
,
space
,
nonlinearity
,
seed
):
np
.
random
.
seed
(
seed
)
f
=
nonlinearity
()
dim
=
len
(
space
.
shape
)
fft
=
ift
.
FFTOperator
(
space
)
h
space
=
f
ft
.
target
[
0
]
hspace
=
space
.
get_default_codomain
(
)
h
t
=
i
ft
.
HarmonicTransformOperator
(
hspace
,
target
=
space
)
binbounds
=
ift
.
PowerSpace
.
useful_binbounds
(
hspace
,
logarithmic
=
False
)
pspace
=
ift
.
PowerSpace
(
hspace
,
binbounds
=
binbounds
)
P
=
ift
.
PowerProjectionOperator
(
domain
=
hspace
,
power_space
=
pspace
)
...
...
@@ -44,13 +46,15 @@ class Noise_Energy_Tests(unittest.TestCase):
def
pspec
(
k
):
return
1
/
(
1
+
k
**
2
)
**
dim
tau
=
ift
.
PS_field
(
pspace
,
pspec
)
A
=
P
.
adjoint_times
(
ift
.
sqrt
(
tau
))
n
=
ift
.
Field
.
from_random
(
domain
=
space
,
random_type
=
'normal'
)
s
=
fft
.
inverse_times
(
xi
*
A
)
var
=
1.
n
=
ift
.
Field
.
from_random
(
domain
=
space
,
random_type
=
'normal'
,
std
=
np
.
sqrt
(
var
))
var
=
ift
.
Field
(
n
.
domain
,
val
=
var
)
N
=
ift
.
DiagonalOperator
(
var
)
eta0
=
ift
.
log
(
var
)
s
=
ht
(
xi
*
A
)
diag
=
ift
.
Field
.
ones
(
space
)
*
10
R
=
ift
.
DiagonalOperator
(
diag
)
diag
=
ift
.
Field
.
ones
(
space
)
eta0
=
ift
.
log
(
diag
)
N
=
ift
.
DiagonalOperator
(
diag
)
d
=
R
(
f
(
s
))
+
n
alpha
=
ift
.
Field
(
d
.
domain
,
val
=
2.
)
...
...
@@ -58,7 +62,7 @@ class Noise_Energy_Tests(unittest.TestCase):
direction
=
ift
.
Field
.
from_random
(
'normal'
,
d
.
domain
)
direction
/=
np
.
sqrt
(
direction
.
var
())
eps
=
1e-
10
eps
=
1e-
8
eta1
=
eta0
+
eps
*
direction
IC
=
ift
.
GradientNormController
(
...
...
@@ -74,22 +78,24 @@ class Noise_Energy_Tests(unittest.TestCase):
d
=
d
,
Instrument
=
R
,
nonlinearity
=
f
,
FFT
=
ff
t
,
ht
=
h
t
,
power
=
A
,
N
=
N
,
S
=
S
,
inverter
=
inverter
).
curvature
Nsamples
=
10
sample_list
=
[
D
.
generate_posterior_sample
()
+
xi
for
i
in
range
(
Nsamples
)]
energy0
=
ift
.
library
.
NoiseEnergy
(
position
=
eta0
,
d
=
d
,
m
=
xi
,
D
=
D
,
t
=
tau
,
Instrument
=
R
,
alpha
=
alpha
,
q
=
q
,
Projection
=
P
,
nonlinearity
=
f
,
FFT
=
ff
t
,
sample
s
=
3
)
ht
=
h
t
,
sample
_list
=
sample_list
)
energy1
=
ift
.
library
.
NoiseEnergy
(
position
=
eta1
,
d
=
d
,
m
=
xi
,
D
=
D
,
t
=
tau
,
Instrument
=
R
,
alpha
=
alpha
,
q
=
q
,
Projection
=
P
,
nonlinearity
=
f
,
FFT
=
ff
t
,
sample
s
=
3
)
ht
=
h
t
,
sample
_list
=
sample_list
)
a
=
(
energy1
.
value
-
energy0
.
value
)
/
eps
b
=
energy0
.
gradient
.
vdot
(
direction
)
tol
=
1e-
2
tol
=
1e-
5
assert_allclose
(
a
,
b
,
rtol
=
tol
,
atol
=
tol
)
test/test_energies/test_power.py
View file @
ab97b34a
...
...
@@ -29,8 +29,10 @@ from numpy.testing import assert_allclose
class
Power_Energy_Tests
(
unittest
.
TestCase
):
@
expand
(
product
([
ift
.
RGSpace
(
64
,
distances
=
.
789
),
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)]))
def
testLinearPower
(
self
,
space
):
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)],
[
132
,
42
,
3
]))
def
testLinearPower
(
self
,
space
,
seed
):
np
.
random
.
seed
(
seed
)
dim
=
len
(
space
.
shape
)
hspace
=
space
.
get_default_codomain
()
ht
=
ift
.
HarmonicTransformOperator
(
hspace
,
space
)
...
...
@@ -92,12 +94,14 @@ class Power_Energy_Tests(unittest.TestCase):
@
expand
(
product
([
ift
.
RGSpace
(
64
,
distances
=
.
789
),
ift
.
RGSpace
([
32
,
32
],
distances
=
.
789
)],
[
ift
.
library
.
Exponential
,
ift
.
library
.
Linear
]))
def
testNonlinearPower
(
self
,
space
,
nonlinearity
):
[
ift
.
library
.
Exponential
,
ift
.
library
.
Linear
],
[
132
,
42
,
3
]))
def
testNonlinearPower
(
self
,
space
,
nonlinearity
,
seed
):
np
.
random
.
seed
(
seed
)
f
=
nonlinearity
()
dim
=
len
(
space
.
shape
)
fft
=
ift
.
FFTOperator
(
space
)
h
space
=
f
ft
.
target
[
0
]
hspace
=
space
.
get_default_codomain
(
)
h
t
=
i
ft
.
HarmonicTransformOperator
(
hspace
,
space
)
binbounds
=
ift
.
PowerSpace
.
useful_binbounds
(
hspace
,
logarithmic
=
True
)
pspace
=
ift
.
PowerSpace
(
hspace
,
binbounds
=
binbounds
)
P
=
ift
.
PowerProjectionOperator
(
domain
=
hspace
,
power_space
=
pspace
)
...
...
@@ -107,7 +111,7 @@ class Power_Energy_Tests(unittest.TestCase):
tau0
=
ift
.
PS_field
(
pspace
,
pspec
)
A
=
P
.
adjoint_times
(
ift
.
sqrt
(
tau0
))
n
=
ift
.
Field
.
from_random
(
domain
=
space
,
random_type
=
'normal'
)
s
=
fft
.
inverse_times
(
xi
*
A
)
s
=
ht
(
xi
*
A
)
diag
=
ift
.
Field
.
ones
(
space
)
*
10
R
=
ift
.
DiagonalOperator
(
diag
)
diag
=
ift
.
Field
.
ones
(
space
)
...
...
@@ -116,7 +120,7 @@ class Power_Energy_Tests(unittest.TestCase):
direction
=
ift
.
Field
.
from_random
(
'normal'
,
pspace
)
direction
/=
np
.
sqrt
(
direction
.
var
())
eps
=
1e-
10
eps
=
1e-
7
tau1
=
tau0
+
eps
*
direction
IC
=
ift
.
GradientNormController
(
...
...
@@ -132,11 +136,13 @@ class Power_Energy_Tests(unittest.TestCase):
d
=
d
,
Instrument
=
R
,
nonlinearity
=
f
,
FFT
=
fft
,
power
=
A
,
N
=
N
,
S
=
S
,
ht
=
ht
,
inverter
=
inverter
).
curvature
Nsamples
=
10
sample_list
=
[
D
.
generate_posterior_sample
()
+
xi
for
_
in
range
(
Nsamples
)]
energy0
=
ift
.
library
.
NonlinearPowerEnergy
(
position
=
tau0
,
...
...
@@ -146,9 +152,9 @@ class Power_Energy_Tests(unittest.TestCase):
Instrument
=
R
,
Projection
=
P
,
nonlinearity
=
f
,
FFT
=
ff
t
,
ht
=
h
t
,
N
=
N
,
inverter
=
inverter
)
sample_list
=
sample_list
)
energy1
=
ift
.
library
.
NonlinearPowerEnergy
(
position
=
tau1
,
d
=
d
,
...
...
@@ -157,11 +163,11 @@ class Power_Energy_Tests(unittest.TestCase):
Instrument
=
R
,
Projection
=
P
,
nonlinearity
=
f
,
FFT
=
ff
t
,
ht
=
h
t
,
N
=
N
,
inverter
=
inverter
)
sample_list
=
sample_list
)
a
=
(
energy1
.
value
-
energy0
.
value
)
/
eps
b
=
energy0
.
gradient
.
vdot
(
direction
)
tol
=
1e-
2
tol
=
1e-
4
assert_allclose
(
a
,
b
,
rtol
=
tol
,
atol
=
tol
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment