From a6bbaa1eb85cc7d9d1d03dfada3e7f20799f49d4 Mon Sep 17 00:00:00 2001
From: Martin Reinecke <martin@mpa-garching.mpg.de>
Date: Fri, 19 Jun 2020 12:43:42 +0200
Subject: [PATCH] cosmetics

---
 nifty6/operators/energy_operators.py | 11 +----------
 1 file changed, 1 insertion(+), 10 deletions(-)

diff --git a/nifty6/operators/energy_operators.py b/nifty6/operators/energy_operators.py
index 627c09eaa..21ece3648 100644
--- a/nifty6/operators/energy_operators.py
+++ b/nifty6/operators/energy_operators.py
@@ -167,15 +167,6 @@ class VariableCovarianceGaussianEnergy(EnergyOperator):
         return res.add_metric(SamplingDtypeSetter(met, self._sampling_dtype))
 
 
-def _build_MultiScalingOperator(domain, scales):
-    op = None
-    for k, dom in domain.items():
-        o = ScalingOperator(dom, scales[k])
-        FA = FieldAdapter(dom, k)
-        o = FA.adjoint @ o @ FA
-        op = o if op is None else op + o
-    return op
-
 class GaussianEnergy(EnergyOperator):
     """Computes a negative-log Gaussian.
 
@@ -197,7 +188,7 @@ class GaussianEnergy(EnergyOperator):
         Operator domain. By default it is inferred from `mean` or
         `covariance` if specified
     sampling_dtype : type
-        Here one can specify whether the distribution is a compelx Gaussian or
+        Here one can specify whether the distribution is a complex Gaussian or
         not. Note that for a complex Gaussian the inverse_covariance is
         .. math ::
         (<ff^dagger>)^{-1}_P(f)/2,
-- 
GitLab