From a6bbaa1eb85cc7d9d1d03dfada3e7f20799f49d4 Mon Sep 17 00:00:00 2001 From: Martin Reinecke <martin@mpa-garching.mpg.de> Date: Fri, 19 Jun 2020 12:43:42 +0200 Subject: [PATCH] cosmetics --- nifty6/operators/energy_operators.py | 11 +---------- 1 file changed, 1 insertion(+), 10 deletions(-) diff --git a/nifty6/operators/energy_operators.py b/nifty6/operators/energy_operators.py index 627c09eaa..21ece3648 100644 --- a/nifty6/operators/energy_operators.py +++ b/nifty6/operators/energy_operators.py @@ -167,15 +167,6 @@ class VariableCovarianceGaussianEnergy(EnergyOperator): return res.add_metric(SamplingDtypeSetter(met, self._sampling_dtype)) -def _build_MultiScalingOperator(domain, scales): - op = None - for k, dom in domain.items(): - o = ScalingOperator(dom, scales[k]) - FA = FieldAdapter(dom, k) - o = FA.adjoint @ o @ FA - op = o if op is None else op + o - return op - class GaussianEnergy(EnergyOperator): """Computes a negative-log Gaussian. @@ -197,7 +188,7 @@ class GaussianEnergy(EnergyOperator): Operator domain. By default it is inferred from `mean` or `covariance` if specified sampling_dtype : type - Here one can specify whether the distribution is a compelx Gaussian or + Here one can specify whether the distribution is a complex Gaussian or not. Note that for a complex Gaussian the inverse_covariance is .. math :: (<ff^dagger>)^{-1}_P(f)/2, -- GitLab