diff --git a/README.rst b/README.rst index 750c4b0f1fbc8c5c2dd6ec72916e694d14a221d7..5846a74e2ead5ba14b7cb281e08e09a9ee4c25b1 100644 --- a/README.rst +++ b/README.rst @@ -96,7 +96,7 @@ Requirements Download ........ -The latest release is tagged **v0.2.1** and is available as a source package +The latest release is tagged **v0.3.0** and is available as a source package at `<https://github.com/mselig/nifty/tags>`_. The current version can be obtained by cloning the repository:: diff --git a/nifty_core.py b/nifty_core.py index d3870e7bc86b6faf8c86953c3d81e372b5745273..a2ae9310655e017cac783e9bba2f9459ad8d18a3 100644 --- a/nifty_core.py +++ b/nifty_core.py @@ -480,7 +480,7 @@ class _about(object): ## nifty support class for global settings """ ## version - self._version = "0.2.1" + self._version = "0.3.0" ## switches and notifications self._errors = notification(default=True,ccode=notification._code) diff --git a/nifty_power.py b/nifty_power.py index 3c08f87b49fc9556e040ede9859bea45502590a0..dc88c90964569aead982f59af6a800c3c944f98d 100644 --- a/nifty_power.py +++ b/nifty_power.py @@ -112,14 +112,11 @@ def smooth_power(power,kindex,mode="2s",exclude=1,sigma=-1): The array specifying the coordinate indices in conjugate space. mode : string - Specifices the smoothing mode (default: "2s") : + Specifies the smoothing mode (default: "2s") : - - "ff" (smoothing in the harmonic basis using fast Fourier - transformations) + - "ff" (smoothing in the harmonic basis using fast Fourier transformations) - "bf" (smoothing in the position basis by brute force) - - "2s" (smoothing in the position basis restricted to a 2-`sigma` - interval) - + - "2s" (smoothing in the position basis restricted to a 2-`sigma` interval) exclude : scalar Excludes the first power spectrum entries from smoothing, indicated by @@ -192,9 +189,9 @@ def _calc_inverse(tk,var,kindex,rho,b1,Amem): ## > computes the inverse Hessian def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None,rho=None,q=1E-42,alpha=1,perception=(1,0),smoothness=False,var=100,bare=True,**kwargs): """ - Inferes the power spectrum. + Infers the power spectrum. - Given a map the infered power spectrum is equal to ``m.power()``; given + Given a map the inferred power spectrum is equal to ``m.power()``; given an uncertainty a power spectrum is inferred according to the "critical" filter formula, which can be extended by a smoothness prior. For details, see references below. @@ -202,7 +199,7 @@ def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None Parameters ---------- m : field - Map of which the power spectrum is inferred. + Map for which the power spectrum is inferred. domain : space The space wherein the power spectrum is defined, can be retrieved from `Sk.domain` (default: None). @@ -230,7 +227,8 @@ def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None Spectral shape parameter of the assumed inverse-Gamme prior (default: 1). perception : {tuple, list, array}, *optional* - Tuple specifying the filter perception (default: (1,0)). + Tuple specifying the filter perception (delta,epsilon) + (default: (1,0)). smoothness : bool, *optional* Indicates whether the smoothness prior is used or not (default: False). @@ -244,13 +242,13 @@ def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None Returns ------- pk : numpy.ndarray - The infered power spectrum, weighted according to the `bare` flag. + The inferred power spectrum, weighted according to the `bare` flag. Other Parameters ---------------- random : string, *optional* - The distribution from which the probes are drawn, supported - distributions are (default: "pm1"): + The distribution from which the probes for the diagonal probing are + drawn, supported distributions are (default: "pm1"): - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}) - "gau" (normal distribution with zero-mean and unit-variance) @@ -280,10 +278,12 @@ def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None Notes ----- The general approach to inference of unknown power spectra is detailed - in [#]_, where the "critical" filter formula used here is derived. The - further incorporation of a smoothness prior is detailed in [#]_, where - the underlying formulas of this implementation are derived and - discussed in terms of their applicability. + in [#]_, where the "critical" filter formula, Eq.(37b), used here is + derived, and the implications of a certain choise of the perception + tuple (delta,epsilon) are discussed. + The further incorporation of a smoothness prior as detailed in [#]_, + where the underlying formula(s), Eq.(27), of this implementation are + derived and discussed in terms of their applicability. References ---------- diff --git a/setup.py b/setup.py index 959d7980142b00c100d3bee885474d3b768163df..fdda91a60a78f7785e17178490b750744779574d 100644 --- a/setup.py +++ b/setup.py @@ -23,7 +23,7 @@ from distutils.core import setup import os setup(name="nifty", - version="0.2.1", + version="0.3.0", description="Numerical Information Field Theory", author="Marco Selig", author_email="mselig@mpa-garching.mpg.de",