Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
NIFTy
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
13
Issues
13
List
Boards
Labels
Service Desk
Milestones
Merge Requests
13
Merge Requests
13
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ift
NIFTy
Commits
a3f357c3
Commit
a3f357c3
authored
Mar 25, 2018
by
Martin Reinecke
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
tweaks
parent
fe1ce4a4
Pipeline
#26452
passed with stage
in 5 minutes and 23 seconds
Changes
7
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
42 additions
and
40 deletions
+42
-40
demos/nonlinear_wiener_filter.py
demos/nonlinear_wiener_filter.py
+2
-1
demos/paper_demos/cartesian_wiener_filter.py
demos/paper_demos/cartesian_wiener_filter.py
+16
-10
nifty4/library/nonlinear_power_energy.py
nifty4/library/nonlinear_power_energy.py
+8
-11
nifty4/library/nonlinear_wiener_filter_energy.py
nifty4/library/nonlinear_wiener_filter_energy.py
+8
-11
nifty4/library/wiener_filter_energy.py
nifty4/library/wiener_filter_energy.py
+3
-4
nifty4/operators/diagonal_operator.py
nifty4/operators/diagonal_operator.py
+2
-2
nifty4/operators/scaling_operator.py
nifty4/operators/scaling_operator.py
+3
-1
No files found.
demos/nonlinear_wiener_filter.py
View file @
a3f357c3
...
...
@@ -35,7 +35,8 @@ if __name__ == "__main__":
d_space
=
R
.
target
power
=
ift
.
sqrt
(
ift
.
create_power_operator
(
h_space
,
p_spec
).
diagonal
)
p_op
=
ift
.
create_power_operator
(
h_space
,
p_spec
)
power
=
ift
.
sqrt
(
p_op
(
ift
.
Field
.
full
(
h_space
,
1.
)))
# Creating the mock data
true_sky
=
nonlinearity
(
HT
(
power
*
sh
))
...
...
demos/paper_demos/cartesian_wiener_filter.py
View file @
a3f357c3
...
...
@@ -36,12 +36,17 @@ if __name__ == "__main__":
ht_1
=
ift
.
HarmonicTransformOperator
(
harmonic_domain
,
space
=
0
)
ht_2
=
ift
.
HarmonicTransformOperator
(
ht_1
.
target
,
space
=
1
)
ht
=
ht_2
*
ht_1
del
ht_1
,
ht_2
S
=
(
ift
.
create_power_operator
(
harmonic_domain
,
power_spectrum_1
,
0
)
*
ift
.
create_power_operator
(
harmonic_domain
,
power_spectrum_2
,
1
))
np
.
random
.
seed
(
10
)
mock_signal
=
S
.
draw_sample
()
plotdict
=
{
"colormap"
:
"Planck-like"
}
plot_space
=
ift
.
RGSpace
((
N_pixels_1
,
N_pixels_2
))
#ift.plot(ht(mock_signal).cast_domain(plot_space),
# name='mock_signal.png', **plotdict)
# Setting up a exemplary response
N1_10
=
int
(
N_pixels_1
/
10
)
...
...
@@ -54,9 +59,10 @@ if __name__ == "__main__":
mask_2
[
N2_10
*
7
:
N2_10
*
9
]
=
0.
mask_2
=
ift
.
Field
.
from_global_data
(
signal_space_2
,
mask_2
)
R
=
ift
.
GeometryRemover
(
signal_domain
)
R
=
R
*
ift
.
DiagonalOperator
(
mask_1
,
signal_domain
,
spaces
=
0
)
#
R = ift.GeometryRemover(signal_domain)
R
=
ift
.
DiagonalOperator
(
mask_1
,
signal_domain
,
spaces
=
0
)
R
=
R
*
ift
.
DiagonalOperator
(
mask_2
,
signal_domain
,
spaces
=
1
)
del
mask_1
,
mask_2
R
=
R
*
ht
R
=
R
*
ift
.
create_harmonic_smoothing_operator
(
harmonic_domain
,
0
,
response_sigma_1
)
...
...
@@ -65,31 +71,31 @@ if __name__ == "__main__":
data_domain
=
R
.
target
noiseless_data
=
R
(
mock_signal
)
del
mock_signal
noise_amplitude
=
noiseless_data
.
val
.
std
()
/
signal_to_noise
# Setting up the noise covariance and drawing a random noise realization
N
=
ift
.
ScalingOperator
(
noise_amplitude
**
2
,
data_domain
)
noise
=
N
.
draw_sample
()
data
=
noiseless_data
+
noise
#ift.plot(data.cast_domain(plot_space), name='data.png', **plotdict)
del
noiseless_data
,
noise
# Wiener filter
j
=
R
.
adjoint_times
(
N
.
inverse_times
(
data
))
del
data
ctrl
=
ift
.
GradientNormController
(
name
=
"inverter"
,
tol_abs_gradnorm
=
0.1
)
inverter
=
ift
.
ConjugateGradient
(
controller
=
ctrl
)
wiener_curvature
=
ift
.
library
.
WienerFilterCurvature
(
S
=
S
,
N
=
N
,
R
=
R
,
inverter
=
inverter
)
del
S
,
N
,
R
,
inverter
m_k
=
wiener_curvature
.
inverse_times
(
j
)
m
=
ht
(
m_k
)
del
j
plotdict
=
{
"colormap"
:
"Planck-like"
}
plot_space
=
ift
.
RGSpace
((
N_pixels_1
,
N_pixels_2
))
ift
.
plot
(
ht
(
mock_signal
).
cast_domain
(
plot_space
),
name
=
'mock_signal.png'
,
**
plotdict
)
ift
.
plot
(
data
.
cast_domain
(
plot_space
),
name
=
'data.png'
,
**
plotdict
)
ift
.
plot
(
m
.
cast_domain
(
plot_space
),
name
=
'map.png'
,
**
plotdict
)
#ift.plot(ht(m_k).cast_domain(plot_space), name='map.png', **plotdict)
# sampling the uncertainty map
mean
,
variance
=
ift
.
probe_with_posterior_samples
(
wiener_curvature
,
ht
,
10
)
ift
.
plot
(
ift
.
sqrt
(
variance
).
cast_domain
(
plot_space
),
name
=
"uncertainty.png"
,
**
plotdict
)
ift
.
plot
((
mean
+
m
).
cast_domain
(
plot_space
),
ift
.
plot
((
mean
+
ht
(
m_k
)
).
cast_domain
(
plot_space
),
name
=
"posterior_mean.png"
,
**
plotdict
)
nifty4/library/nonlinear_power_energy.py
View file @
a3f357c3
...
...
@@ -59,7 +59,7 @@ class NonlinearPowerEnergy(Energy):
self
.
D
=
D
self
.
d
=
d
self
.
N
=
N
self
.
T
=
SmoothnessOperator
(
domain
=
self
.
position
.
domain
[
0
],
self
.
T
=
SmoothnessOperator
(
domain
=
position
.
domain
[
0
],
strength
=
sigma
,
logarithmic
=
True
)
self
.
ht
=
ht
self
.
Instrument
=
Instrument
...
...
@@ -76,19 +76,15 @@ class NonlinearPowerEnergy(Energy):
self
.
inverter
=
inverter
A
=
Distributor
(
exp
(.
5
*
position
))
map_s
=
self
.
ht
(
A
*
xi
)
Tpos
=
self
.
T
(
position
)
self
.
_gradient
=
None
for
xi_sample
in
self
.
xi_sample_list
:
map_s
=
self
.
ht
(
A
*
xi_sample
)
LinR
=
LinearizedPowerResponse
(
self
.
Instrument
,
self
.
nonlinearity
,
self
.
ht
,
self
.
Distributor
,
self
.
position
,
xi_sample
)
map_s
=
ht
(
A
*
xi_sample
)
LinR
=
LinearizedPowerResponse
(
Instrument
,
nonlinearity
,
ht
,
Distributor
,
position
,
xi_sample
)
residual
=
self
.
d
-
\
self
.
Instrument
(
self
.
nonlinearity
(
map_s
))
tmp
=
self
.
N
.
inverse_times
(
residual
)
residual
=
self
.
d
-
Instrument
(
nonlinearity
(
map_s
))
tmp
=
N
.
inverse_times
(
residual
)
lh
=
0.5
*
residual
.
vdot
(
tmp
)
grad
=
LinR
.
adjoint_times
(
tmp
)
...
...
@@ -100,7 +96,8 @@ class NonlinearPowerEnergy(Energy):
self
.
_gradient
+=
grad
self
.
_value
*=
1.
/
len
(
self
.
xi_sample_list
)
self
.
_value
+=
0.5
*
self
.
position
.
vdot
(
Tpos
)
Tpos
=
self
.
T
(
position
)
self
.
_value
+=
0.5
*
position
.
vdot
(
Tpos
)
self
.
_gradient
*=
-
1.
/
len
(
self
.
xi_sample_list
)
self
.
_gradient
+=
Tpos
self
.
_gradient
.
lock
()
...
...
nifty4/library/nonlinear_wiener_filter_energy.py
View file @
a3f357c3
...
...
@@ -31,20 +31,18 @@ class NonlinearWienerFilterEnergy(Energy):
self
.
nonlinearity
=
nonlinearity
self
.
ht
=
ht
self
.
power
=
power
m
=
self
.
ht
(
self
.
power
*
self
.
position
)
self
.
LinearizedResponse
=
LinearizedSignalResponse
(
Instrument
,
nonlinearity
,
ht
,
power
,
m
)
m
=
ht
(
power
*
position
)
residual
=
d
-
Instrument
(
nonlinearity
(
m
))
self
.
N
=
N
self
.
S
=
S
self
.
inverter
=
inverter
t1
=
self
.
S
.
inverse_times
(
self
.
position
)
t2
=
self
.
N
.
inverse_times
(
residual
)
tmp
=
self
.
position
.
vdot
(
t1
)
+
residual
.
vdot
(
t2
)
self
.
_value
=
0.5
*
tmp
.
real
self
.
_gradient
=
t1
-
self
.
LinearizedResponse
.
adjoint_times
(
t2
)
self
.
_gradient
.
lock
()
t1
=
S
.
inverse_times
(
position
)
t2
=
N
.
inverse_times
(
residual
)
self
.
_value
=
0.5
*
(
position
.
vdot
(
t1
)
+
residual
.
vdot
(
t2
)).
real
self
.
R
=
LinearizedSignalResponse
(
Instrument
,
nonlinearity
,
ht
,
power
,
m
)
self
.
_gradient
=
(
t1
-
self
.
R
.
adjoint_times
(
t2
))
.
lock
()
def
at
(
self
,
position
):
return
self
.
__class__
(
position
,
self
.
d
,
self
.
Instrument
,
...
...
@@ -62,5 +60,4 @@ class NonlinearWienerFilterEnergy(Energy):
@
property
@
memo
def
curvature
(
self
):
return
WienerFilterCurvature
(
R
=
self
.
LinearizedResponse
,
N
=
self
.
N
,
S
=
self
.
S
,
inverter
=
self
.
inverter
)
return
WienerFilterCurvature
(
self
.
R
,
self
.
N
,
self
.
S
,
self
.
inverter
)
nifty4/library/wiener_filter_energy.py
View file @
a3f357c3
...
...
@@ -51,12 +51,11 @@ class WienerFilterEnergy(Energy):
self
.
_curvature
=
WienerFilterCurvature
(
R
,
N
,
S
,
inverter
)
self
.
_inverter
=
inverter
if
_j
is
None
:
_j
=
self
.
R
.
adjoint_times
(
self
.
N
.
inverse_times
(
d
))
_j
=
R
.
adjoint_times
(
N
.
inverse_times
(
d
))
self
.
_j
=
_j
Dx
=
self
.
_curvature
(
self
.
position
)
self
.
_value
=
0.5
*
self
.
position
.
vdot
(
Dx
)
-
self
.
_j
.
vdot
(
self
.
position
)
self
.
_gradient
=
Dx
-
self
.
_j
self
.
_gradient
.
lock
()
self
.
_value
=
0.5
*
position
.
vdot
(
Dx
)
-
self
.
_j
.
vdot
(
position
)
self
.
_gradient
=
(
Dx
-
self
.
_j
).
lock
()
def
at
(
self
,
position
):
return
self
.
__class__
(
position
=
position
,
d
=
None
,
R
=
self
.
R
,
N
=
self
.
N
,
...
...
nifty4/operators/diagonal_operator.py
View file @
a3f357c3
...
...
@@ -71,8 +71,6 @@ class DiagonalOperator(EndomorphicOperator):
self
.
_spaces
=
utilities
.
parse_spaces
(
spaces
,
len
(
self
.
_domain
))
if
len
(
self
.
_spaces
)
!=
len
(
diagonal
.
domain
):
raise
ValueError
(
"spaces and domain must have the same length"
)
# if nspc==len(self.diagonal.domain),
# we could do some optimization
for
i
,
j
in
enumerate
(
self
.
_spaces
):
if
diagonal
.
domain
[
i
]
!=
self
.
_domain
[
j
]:
raise
ValueError
(
"domain mismatch"
)
...
...
@@ -168,6 +166,8 @@ class DiagonalOperator(EndomorphicOperator):
@
property
def
adjoint
(
self
):
if
np
.
issubdtype
(
self
.
_ldiag
.
dtype
,
np
.
floating
):
return
self
res
=
self
.
_skeleton
(())
res
.
_ldiag
=
self
.
_ldiag
.
conjugate
()
return
res
...
...
nifty4/operators/scaling_operator.py
View file @
a3f357c3
...
...
@@ -61,7 +61,7 @@ class ScalingOperator(EndomorphicOperator):
if
self
.
_factor
==
1.
:
return
x
.
copy
()
if
self
.
_factor
==
0.
:
return
Field
.
zeros_like
(
x
,
dtype
=
x
.
dtype
)
return
Field
.
zeros_like
(
x
)
if
mode
==
self
.
TIMES
:
return
x
*
self
.
_factor
...
...
@@ -81,6 +81,8 @@ class ScalingOperator(EndomorphicOperator):
@
property
def
adjoint
(
self
):
if
np
.
issubdtype
(
type
(
self
.
_factor
),
np
.
floating
):
return
self
return
ScalingOperator
(
np
.
conj
(
self
.
_factor
),
self
.
_domain
)
@
property
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment