Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
82e1c432
Commit
82e1c432
authored
Jan 15, 2018
by
Martin Reinecke
Browse files
progress
parent
edb983e4
Pipeline
#23718
failed with stage
in 4 minutes and 13 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
demos/wiener_filter_via_curvature.py
View file @
82e1c432
...
@@ -17,7 +17,7 @@ if __name__ == "__main__":
...
@@ -17,7 +17,7 @@ if __name__ == "__main__":
# smoothing length of response
# smoothing length of response
response_sigma
=
0.01
*
nu
.
m
response_sigma
=
0.01
*
nu
.
m
# The signal to noise ratio
# The signal to noise ratio
signal_to_noise
=
0.7
signal_to_noise
=
7
0.7
# note that field_variance**2 = a*k_0/4. for this analytic form of power
# note that field_variance**2 = a*k_0/4. for this analytic form of power
# spectrum
# spectrum
...
@@ -49,27 +49,31 @@ if __name__ == "__main__":
...
@@ -49,27 +49,31 @@ if __name__ == "__main__":
mock_harmonic
=
ift
.
power_synthesize
(
mock_power
,
real_signal
=
True
)
mock_harmonic
=
ift
.
power_synthesize
(
mock_power
,
real_signal
=
True
)
print
mock_harmonic
.
val
[
0
]
/
nu
.
K
/
(
nu
.
m
**
dimensionality
)
print
mock_harmonic
.
val
[
0
]
/
nu
.
K
/
(
nu
.
m
**
dimensionality
)
mock_signal
=
fft
(
mock_harmonic
)
mock_signal
=
fft
(
mock_harmonic
)
print
mock_signal
.
val
[
0
]
/
nu
.
K
print
"msig"
,
mock_signal
.
val
[
0
:
10
]
/
nu
.
K
exposure
=
1.
/
nu
.
K
sensitivity
=
(
1.
/
nu
.
m
)
**
dimensionality
/
nu
.
K
R
=
ift
.
ResponseOperator
(
signal_space
,
sigma
=
(
response_sigma
,),
R
=
ift
.
ResponseOperator
(
signal_space
,
sigma
=
(
0.
*
response_sigma
,),
exposure
=
(
exposure
,))
sensitivity
=
(
sensitivity
,))
data_domain
=
R
.
target
[
0
]
data_domain
=
R
.
target
[
0
]
R_harmonic
=
R
*
fft
R_harmonic
=
R
*
fft
noise_amplitude
=
1.
/
signal_to_noise
*
field_sigma
*
sensitivity
*
((
L
/
N_pixels
)
**
dimensionality
)
print
noise_amplitude
N
=
ift
.
DiagonalOperator
(
N
=
ift
.
DiagonalOperator
(
ift
.
Field
.
full
(
data_domain
,
ift
.
Field
.
full
(
data_domain
,
noise_amplitude
**
2
))
mock_signal
.
var
()
/
signal_to_noise
))
noise
=
ift
.
Field
.
from_random
(
noise
=
ift
.
Field
.
from_random
(
domain
=
data_domain
,
random_type
=
'normal'
,
domain
=
data_domain
,
random_type
=
'normal'
,
std
=
mock_signal
.
std
()
/
np
.
sqrt
(
signal_to_noise
),
mean
=
0
)
std
=
noise_amplitude
,
mean
=
0
)
data
=
R
(
mock_signal
)
#+ noise
data
=
R
(
mock_signal
)
print
data
.
val
[
5
]
print
data
.
val
[
5
:
10
]
data
+=
noise
print
data
.
val
[
5
:
10
]
# Wiener filter
# Wiener filter
j
=
R_harmonic
.
adjoint_times
(
N
.
inverse_times
(
data
))
j
=
R_harmonic
.
adjoint_times
(
N
.
inverse_times
(
data
))
print
"xx"
,
j
.
val
[
0
]
*
nu
.
K
*
(
nu
.
m
**
dimensionality
)
ctrl
=
ift
.
GradientNormController
(
ctrl
=
ift
.
GradientNormController
(
verbose
=
True
,
tol_abs_gradnorm
=
1e-4
/
nu
.
K
)
verbose
=
True
,
tol_abs_gradnorm
=
1e-4
0
/
(
nu
.
K
*
(
nu
.
m
**
dimensionality
))
)
inverter
=
ift
.
ConjugateGradient
(
controller
=
ctrl
)
inverter
=
ift
.
ConjugateGradient
(
controller
=
ctrl
)
wiener_curvature
=
ift
.
library
.
WienerFilterCurvature
(
wiener_curvature
=
ift
.
library
.
WienerFilterCurvature
(
S
=
S
,
N
=
N
,
R
=
R_harmonic
,
inverter
=
inverter
)
S
=
S
,
N
=
N
,
R
=
R_harmonic
,
inverter
=
inverter
)
...
...
nifty/operators/response_operator.py
View file @
82e1c432
...
@@ -32,33 +32,36 @@ class GeometryRemover(LinearOperator):
...
@@ -32,33 +32,36 @@ class GeometryRemover(LinearOperator):
return
Field
(
self
.
_domain
,
val
=
x
.
val
).
weight
(
1
)
return
Field
(
self
.
_domain
,
val
=
x
.
val
).
weight
(
1
)
def
ResponseOperator
(
domain
,
sigma
,
exposure
):
def
ResponseOperator
(
domain
,
sigma
,
sensitivity
):
# sensitivity has units 1/field/volume and gives a measure of how much
# the instrument will excited when it is exposed to a certain field
# volume amplitude
domain
=
DomainTuple
.
make
(
domain
)
domain
=
DomainTuple
.
make
(
domain
)
ncomp
=
len
(
exposure
)
ncomp
=
len
(
sensitivity
)
if
len
(
sigma
)
!=
ncomp
or
len
(
domain
)
!=
ncomp
:
if
len
(
sigma
)
!=
ncomp
or
len
(
domain
)
!=
ncomp
:
raise
ValueError
(
"length mismatch between sigma,
exposure
"
raise
ValueError
(
"length mismatch between sigma,
sensitivity
"
"and domain"
)
"and domain"
)
ncomp
=
len
(
sigma
)
ncomp
=
len
(
sigma
)
if
ncomp
==
0
:
if
ncomp
==
0
:
raise
ValueError
(
"Empty response operator not allowed"
)
raise
ValueError
(
"Empty response operator not allowed"
)
kernel
=
None
kernel
=
None
expo
=
None
sensi
=
None
for
i
in
range
(
ncomp
):
for
i
in
range
(
ncomp
):
if
sigma
[
i
]
>
0
:
if
sigma
[
i
]
>
0
:
op
=
FFTSmoothingOperator
(
domain
,
sigma
[
i
],
space
=
i
)
op
=
FFTSmoothingOperator
(
domain
,
sigma
[
i
],
space
=
i
)
kernel
=
op
if
kernel
is
None
else
op
*
kernel
kernel
=
op
if
kernel
is
None
else
op
*
kernel
if
np
.
isscalar
(
exposure
[
i
]):
if
np
.
isscalar
(
sensitivity
[
i
]):
if
exposure
[
i
]
!=
1.
:
if
sensitivity
[
i
]
!=
1.
:
op
=
ScalingOperator
(
exposure
[
i
],
domain
)
op
=
ScalingOperator
(
sensitivity
[
i
],
domain
)
expo
=
op
if
expo
is
None
else
op
*
expo
sensi
=
op
if
sensi
is
None
else
op
*
sensi
elif
isinstance
(
exposure
[
i
],
Field
):
elif
isinstance
(
sensitivity
[
i
],
Field
):
op
=
DiagonalOperator
(
exposure
[
i
],
domain
=
domain
,
spaces
=
i
)
op
=
DiagonalOperator
(
sensitivity
[
i
],
domain
=
domain
,
spaces
=
i
)
expo
=
op
if
expo
is
None
else
op
*
expo
sensi
=
op
if
sensi
is
None
else
op
*
sensi
res
=
GeometryRemover
(
domain
)
res
=
GeometryRemover
(
domain
)
if
expo
is
not
None
:
if
sensi
is
not
None
:
res
=
res
*
expo
res
=
res
*
sensi
if
kernel
is
not
None
:
if
kernel
is
not
None
:
res
=
res
*
kernel
res
=
res
*
kernel
return
res
return
res
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment