From 73b5bbab8491600c3a7d7fff9a2e08ebdc88f26c Mon Sep 17 00:00:00 2001
From: Martin Reinecke <martin@mpa-garching.mpg.de>
Date: Tue, 6 Feb 2018 15:58:24 +0100
Subject: [PATCH] re-style the notebook a bit
---
demos/Wiener_Filter.ipynb | 44 ++++++++++++++++++++-------------------
1 file changed, 23 insertions(+), 21 deletions(-)
diff --git a/demos/Wiener_Filter.ipynb b/demos/Wiener_Filter.ipynb
index 12e26c5b0..c576c81a0 100644
--- a/demos/Wiener_Filter.ipynb
+++ b/demos/Wiener_Filter.ipynb
@@ -80,8 +80,8 @@
"source": [
"## Wiener Filter: Example\n",
"\n",
- "- One-dimensional signal with power spectrum: $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
- "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$. Recall: $P(k)$ defines an isotropic and homogeneous $S$.\n",
+ "- We assume statistical homogeneity and isotropy. Therefore the signal covariance $S$ is diagonal in harmonic space, and is described by a one-dimensional power spectrum, assumed here as $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
+ "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$.\n",
"- $N = 0.2 \\cdot \\mathbb{1}$.\n",
"- Number of data points $N_{pix} = 512$.\n",
"- reconstruction in harmonic space.\n",
@@ -328,9 +328,9 @@
"outputs": [],
"source": [
"plt.figure(figsize=(15,10))\n",
- "plt.plot(s_data, 'g', label=\"Signal\")\n",
- "plt.plot(d_data, 'k+', label=\"Data\")\n",
- "plt.plot(m_data, 'r', label=\"Reconstruction\")\n",
+ "plt.plot(s_data, 'r', label=\"Signal\", linewidth=3)\n",
+ "plt.plot(d_data, 'k.', label=\"Data\")\n",
+ "plt.plot(m_data, 'k', label=\"Reconstruction\",linewidth=3)\n",
"plt.title(\"Reconstruction\")\n",
"plt.legend()\n",
"plt.show()"
@@ -347,9 +347,9 @@
"outputs": [],
"source": [
"plt.figure(figsize=(15,10))\n",
- "plt.plot(s_data - s_data, 'g', label=\"Signal\")\n",
- "plt.plot(d_data - s_data, 'k+', label=\"Data\")\n",
- "plt.plot(m_data - s_data, 'r', label=\"Reconstruction\")\n",
+ "plt.plot(s_data - s_data, 'r', label=\"Signal\", linewidth=3)\n",
+ "plt.plot(d_data - s_data, 'k.', label=\"Data\")\n",
+ "plt.plot(m_data - s_data, 'k', label=\"Reconstruction\",linewidth=3)\n",
"plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)\n",
"plt.title(\"Residuals\")\n",
"plt.legend()\n",
@@ -383,9 +383,9 @@
"ymin = min(m_power_data)\n",
"plt.ylim(ymin, 1)\n",
"xs = np.arange(1,int(N_pixels/2),.1)\n",
- "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", linewidth=.7, color='k')\n",
- "plt.plot(s_power_data, 'g', label=\"Signal\")\n",
- "plt.plot(m_power_data, 'r', label=\"Reconstruction\")\n",
+ "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", color='k',alpha=0.5)\n",
+ "plt.plot(s_power_data, 'r', label=\"Signal\")\n",
+ "plt.plot(m_power_data, 'k', label=\"Reconstruction\")\n",
"plt.axhline(noise_amplitude**2 / N_pixels, color=\"k\", linestyle='--', label=\"Noise level\", alpha=.5)\n",
"plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)\n",
"plt.title(\"Power Spectrum\")\n",
@@ -545,8 +545,8 @@
"outputs": [],
"source": [
"plt.figure(figsize=(15,10))\n",
- "plt.plot(s_data, 'g', label=\"Signal\", linewidth=1)\n",
- "plt.plot(d_data, 'k+', label=\"Data\", alpha=1)\n",
+ "plt.plot(s_data, 'r', label=\"Signal\", linewidth=3)\n",
+ "plt.plot(d_data, 'k.', label=\"Data\")\n",
"plt.axvspan(l, h, facecolor='0.8', alpha=.5)\n",
"plt.title(\"Incomplete Data\")\n",
"plt.legend()"
@@ -563,11 +563,11 @@
"outputs": [],
"source": [
"fig = plt.figure(figsize=(15,10))\n",
- "plt.plot(s_data, 'g', label=\"Signal\", alpha=1, linewidth=4)\n",
- "plt.plot(d_data, 'k+', label=\"Data\", alpha=.5)\n",
- "plt.plot(m_data, 'r', label=\"Reconstruction\")\n",
- "plt.axvspan(l, h, facecolor='0.8', alpha=.5)\n",
- "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0')\n",
+ "plt.axvspan(l, h, facecolor='0.8',alpha=0.5)\n",
+ "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0.5', alpha=0.5)\n",
+ "plt.plot(s_data, 'r', label=\"Signal\", alpha=1, linewidth=3)\n",
+ "plt.plot(d_data, 'k.', label=\"Data\")\n",
+ "plt.plot(m_data, 'k', label=\"Reconstruction\", linewidth=3)\n",
"plt.title(\"Reconstruction of incomplete data\")\n",
"plt.legend()"
]
@@ -702,10 +702,12 @@
"mi = np.min(s_data)\n",
"ma = np.max(s_data)\n",
"\n",
- "fig, axes = plt.subplots(2, 2, figsize=(15, 15))\n",
+ "fig, axes = plt.subplots(3, 2, figsize=(15, 22.5))\n",
+ "samp1 = HT(curv.draw_sample()+m).val\n",
+ "samp2 = HT(curv.draw_sample()+m).val\n",
"\n",
- "data = [s_data, m_data, s_data - m_data, uncertainty]\n",
- "caption = [\"Signal\", \"Reconstruction\", \"Residuals\", \"Uncertainty Map\"]\n",
+ "data = [s_data, m_data, samp1, samp2, s_data - m_data, uncertainty]\n",
+ "caption = [\"Signal\", \"Reconstruction\", \"Sample 1\", \"Sample 2\", \"Residuals\", \"Uncertainty Map\"]\n",
"\n",
"for ax in axes.flat:\n",
" im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi, vmax=ma)\n",
--
GitLab