diff --git a/nifty5/library/correlated_fields.py b/nifty5/library/correlated_fields.py index 25830b40e671f459965d16a4787973b441464383..2b41fa7b5c8aa622ed180911fc974668b654e4b5 100644 --- a/nifty5/library/correlated_fields.py +++ b/nifty5/library/correlated_fields.py @@ -73,7 +73,7 @@ def _log_k_lengths(pspace): return np.log(pspace.k_lengths[1:]) -def _logkl(power_space): +def _relative_log_k_lengths(power_space): """Log-distance to first bin logkl.shape==power_space.shape, logkl[0]=logkl[1]=0""" power_space = DomainTuple.make(power_space) @@ -98,7 +98,7 @@ class _SlopeRemover(EndomorphicOperator): self._domain = makeDomain(domain) assert len(self._domain) == 1 assert isinstance(self._domain[0], PowerSpace) - logkl = _logkl(self._domain) + logkl = _relative_log_k_lengths(self._domain) self._sc = logkl/float(logkl[-1]) self._capability = self.TIMES | self.ADJOINT_TIMES @@ -131,8 +131,7 @@ class _TwoLogIntegrations(LinearOperator): if mode == self.TIMES: x = x.to_global_data() res = np.empty(self._target.shape) - res[0] = 0 - res[1] = 0 + res[0] = res[1] = 0 res[2:] = np.cumsum(x[1]) res[2:] = (res[2:] + res[1:-1])/2*self._log_vol + x[0] res[2:] = np.cumsum(res[2:]) @@ -215,7 +214,7 @@ class _Amplitude(Operator): foo[0] = _log_vol(target)**2/12. shift = from_global_data(dom, foo) - t = from_global_data(target, _logkl(target)) + t = from_global_data(target, _relative_log_k_lengths(target)) foo, bar = 2*(np.zeros(target.shape),) foo[1:] = bar[0] = totvol