Commit 61f4ef51 authored by Philipp Arras's avatar Philipp Arras
Browse files

Clean up newtoncg

parent e808fff0
......@@ -154,76 +154,24 @@ class NewtonCG(DescentMinimizer):
Algorithm derived from SciPy sources.
def __init__(self, controller, line_searcher=None):
def __init__(self, controller, napprox=0, line_searcher=None):
if line_searcher is None:
line_searcher = LineSearch(preferred_initial_step_size=1.)
super(NewtonCG, self).__init__(controller=controller,
self._napprox = int(napprox)
def __call__(self, energy, preconditioner=None):
"""Performs the minimization of the provided Energy functional.
energy : Energy
Energy object which provides value, gradient and metric at a
specific position in parameter space.
Latest `energy` of the minimization.
Can be controller.CONVERGED or controller.ERROR
The minimization is stopped if
* the controller returns controller.CONVERGED or controller.ERROR,
* a perfectly flat point is reached,
* according to the line-search the minimum is found,
f_k_minus_1 = None
controller = self._controller
status = controller.start(energy)
if status != controller.CONTINUE:
return energy, status
while True:
# check if position is at a flat point
if energy.gradient_norm == 0:
return energy, controller.CONVERGED
# compute a step length that reduces energy.value sufficiently
new_energy, success = self.line_searcher.perform_line_search(
energy=energy, pk=self.get_descent_direction(energy, preconditioner),
if not success:
f_k_minus_1 = energy.value
if new_energy.value > energy.value:
logger.error("Error: Energy has increased")
return energy, controller.ERROR
if new_energy.value == energy.value:
"Warning: Energy has not changed. Assuming convergence...")
return new_energy, controller.CONVERGED
energy = new_energy
status = self._controller.check(energy)
if status != controller.CONTINUE:
return energy, status
def get_descent_direction(self, energy):
# if self._napprox > 1:
# from ..probing import approximation2endo
# sqdiag = approximation2endo(energy.metric, self._napprox).sqrt()
def get_descent_direction(self, energy, preconditioner=None):
float64eps = np.finfo(np.float64).eps
r = energy.gradient
maggrad = abs(r).sum()
termcond = np.min([0.5, np.sqrt(maggrad)]) * maggrad
pos = energy.position*0
d = r if preconditioner is None else preconditioner(r)
d = r
previous_gamma = r.vdot(d)
ii = 0
while True:
......@@ -241,7 +189,7 @@ class NewtonCG(DescentMinimizer):
alpha = previous_gamma/curv
pos = pos - alpha*d
r = r - alpha*q
s = r if preconditioner is None else preconditioner(r)
s = r
gamma = r.vdot(s)
d = d*(gamma/previous_gamma)+r
previous_gamma = gamma
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment