Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
542bf762
Commit
542bf762
authored
Jun 08, 2018
by
Martin Reinecke
Browse files
tweaks
parent
ac0c8845
Pipeline
#30505
failed with stages
in 42 seconds
Changes
5
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
demos/sampling_demo.py
View file @
542bf762
...
@@ -38,14 +38,17 @@ N_iter = 300
...
@@ -38,14 +38,17 @@ N_iter = 300
IC
=
ift
.
GradientNormController
(
tol_abs_gradnorm
=
1e-5
,
iteration_limit
=
N_iter
)
IC
=
ift
.
GradientNormController
(
tol_abs_gradnorm
=
1e-5
,
iteration_limit
=
N_iter
)
inverter
=
ift
.
ConjugateGradient
(
IC
)
inverter
=
ift
.
ConjugateGradient
(
IC
)
sampling_inverter
=
ift
.
ConjugateGradient
(
IC
)
sampling_inverter
=
ift
.
ConjugateGradient
(
IC
)
D_inv_1
=
ift
.
SamplingEnabler
(
ift
.
SandwichOperator
.
make
(
R_p
,
N
.
inverse
),
S
.
inverse
,
inverter
,
sampling_inverter
)
D_inv_1
=
ift
.
SamplingEnabler
(
ift
.
SandwichOperator
.
make
(
R_p
,
N
.
inverse
),
S
.
inverse
,
sampling_inverter
)
D_inv_1
=
ift
.
InversionEnabler
(
D_inv_1
,
inverter
)
D_inv_2
=
ift
.
SamplingEnabler2
(
D_inv
,
inverter
,
sampling_inverter
)
D_inv_2
=
ift
.
SamplingEnabler2
(
D_inv
,
sampling_inverter
)
# GOOD
samps_1
=
[
D_inv_1
.
draw_sample
(
from_inverse
=
True
)
for
i
in
range
(
N_samps
)]
#GOOD
samps_1
=
[
D_inv_1
.
draw_sample
(
from_inverse
=
True
)
for
i
in
range
(
N_samps
)]
samps_2
=
[
D_inv_2
.
draw_sample
(
from_inverse
=
True
)
for
i
in
range
(
N_samps
)]
#BAD
# BAD
samps_2
=
[
D_inv_2
.
draw_sample
(
from_inverse
=
True
)
for
i
in
range
(
N_samps
)]
m
=
D_inv_1
.
inverse_times
(
j
)
m
=
D_inv_1
.
inverse_times
(
j
)
m_x
=
sky
(
m
)
m_x
=
sky
(
m
)
...
@@ -63,7 +66,8 @@ for i in range(N_samps):
...
@@ -63,7 +66,8 @@ for i in range(N_samps):
else
:
else
:
plt
.
plot
(
sky
(
samps_2
[
i
]).
to_global_data
()[
290
:
360
],
color
=
'b'
,
plt
.
plot
(
sky
(
samps_2
[
i
]).
to_global_data
()[
290
:
360
],
color
=
'b'
,
**
pltdict
)
**
pltdict
)
plt
.
plot
(
sky
(
samps_1
[
i
]).
to_global_data
()[
290
:
360
],
color
=
'r'
,
**
pltdict
)
plt
.
plot
(
sky
(
samps_1
[
i
]).
to_global_data
()[
290
:
360
],
color
=
'r'
,
**
pltdict
)
plt
.
plot
((
s_x
-
m_x
).
to_global_data
()[
290
:
360
],
color
=
'k'
,
plt
.
plot
((
s_x
-
m_x
).
to_global_data
()[
290
:
360
],
color
=
'k'
,
label
=
'signal - mean'
)
label
=
'signal - mean'
)
plt
.
title
(
'Comparison of conservative vs default samples near area of low noise'
)
plt
.
title
(
'Comparison of conservative vs default samples near area of low noise'
)
...
...
nifty4/operators/__init__.py
View file @
542bf762
...
@@ -18,4 +18,5 @@ __all__ = ["LinearOperator", "EndomorphicOperator", "ScalingOperator",
...
@@ -18,4 +18,5 @@ __all__ = ["LinearOperator", "EndomorphicOperator", "ScalingOperator",
"DiagonalOperator"
,
"HarmonicTransformOperator"
,
"FFTOperator"
,
"DiagonalOperator"
,
"HarmonicTransformOperator"
,
"FFTOperator"
,
"FFTSmoothingOperator"
,
"GeometryRemover"
,
"FFTSmoothingOperator"
,
"GeometryRemover"
,
"LaplaceOperator"
,
"SmoothnessOperator"
,
"PowerDistributor"
,
"LaplaceOperator"
,
"SmoothnessOperator"
,
"PowerDistributor"
,
"InversionEnabler"
,
"SandwichOperator"
,
'SamplingEnabler'
,
'SamplingEnabler2'
]
"InversionEnabler"
,
"SandwichOperator"
,
"SamplingEnabler"
,
"SamplingEnabler2"
]
nifty4/operators/inversion_enabler.py
View file @
542bf762
...
@@ -54,10 +54,6 @@ class InversionEnabler(EndomorphicOperator):
...
@@ -54,10 +54,6 @@ class InversionEnabler(EndomorphicOperator):
def
domain
(
self
):
def
domain
(
self
):
return
self
.
_op
.
domain
return
self
.
_op
.
domain
@
property
def
target
(
self
):
return
self
.
_op
.
target
@
property
@
property
def
capability
(
self
):
def
capability
(
self
):
return
self
.
_addInverse
[
self
.
_op
.
capability
]
return
self
.
_addInverse
[
self
.
_op
.
capability
]
...
...
nifty4/operators/sampling_enabler.py
View file @
542bf762
...
@@ -19,11 +19,11 @@
...
@@ -19,11 +19,11 @@
from
..minimization.quadratic_energy
import
QuadraticEnergy
from
..minimization.quadratic_energy
import
QuadraticEnergy
from
..minimization.iteration_controller
import
IterationController
from
..minimization.iteration_controller
import
IterationController
from
..logger
import
logger
from
..logger
import
logger
from
.
inversion_enabler
import
InversionEnable
r
from
.
endomorphic_operator
import
EndomorphicOperato
r
import
numpy
as
np
import
numpy
as
np
class
SamplingEnabler
(
InversionEnable
r
):
class
SamplingEnabler
(
EndomorphicOperato
r
):
"""Class which augments the capability of another operator object via
"""Class which augments the capability of another operator object via
numerical inversion.
numerical inversion.
...
@@ -44,20 +44,33 @@ class SamplingEnabler(InversionEnabler):
...
@@ -44,20 +44,33 @@ class SamplingEnabler(InversionEnabler):
convergence.
convergence.
"""
"""
def
__init__
(
self
,
likelihood
,
prior
,
application_inverter
,
sampling_inverter
,
approximation
=
None
):
def
__init__
(
self
,
likelihood
,
prior
,
sampling_inverter
,
approximation
=
None
):
self
.
_op
=
likelihood
+
prior
self
.
_op
=
likelihood
+
prior
super
(
SamplingEnabler
,
self
).
__init__
(
self
.
_op
,
application_inverter
,
approximation
=
approximation
)
super
(
SamplingEnabler
,
self
).
__init__
()
self
.
likelihood
=
likelihood
self
.
_
likelihood
=
likelihood
self
.
prior
=
prior
self
.
_
prior
=
prior
self
.
sampling_inverter
=
sampling_inverter
self
.
_
sampling_inverter
=
sampling_inverter
def
draw_sample
(
self
,
from_inverse
=
False
,
dtype
=
np
.
float64
):
def
draw_sample
(
self
,
from_inverse
=
False
,
dtype
=
np
.
float64
):
try
:
try
:
return
self
.
_op
.
draw_sample
(
from_inverse
,
dtype
)
return
self
.
_op
.
draw_sample
(
from_inverse
,
dtype
)
except
NotImplementedError
:
except
NotImplementedError
:
s
=
self
.
prior
.
draw_sample
()
s
=
self
.
_prior
.
draw_sample
()
sp
=
self
.
prior
.
inverse_times
(
s
)
sp
=
self
.
_prior
.
inverse_times
(
s
)
nj
=
self
.
likelihood
.
draw_sample
()
nj
=
self
.
_likelihood
.
draw_sample
()
energy
=
QuadraticEnergy
(
s
,
self
.
_op
,
sp
+
nj
,
_grad
=
self
.
likelihood
(
s
)
-
nj
)
energy
=
QuadraticEnergy
(
s
,
self
.
_op
,
sp
+
nj
,
energy
,
convergence
=
self
.
sampling_inverter
(
energy
)
_grad
=
self
.
_likelihood
(
s
)
-
nj
)
energy
,
convergence
=
self
.
_sampling_inverter
(
energy
)
return
energy
.
position
return
energy
.
position
@
property
def
domain
(
self
):
return
self
.
_op
.
domain
@
property
def
capability
(
self
):
return
self
.
_op
.
capability
def
apply
(
self
,
x
,
mode
):
return
self
.
_op
.
apply
(
x
,
mode
)
nifty4/operators/sampling_enabler2.py
View file @
542bf762
...
@@ -19,10 +19,12 @@
...
@@ -19,10 +19,12 @@
from
..minimization.quadratic_energy
import
QuadraticEnergy
from
..minimization.quadratic_energy
import
QuadraticEnergy
from
..minimization.iteration_controller
import
IterationController
from
..minimization.iteration_controller
import
IterationController
from
..logger
import
logger
from
..logger
import
logger
from
.endomorphic_operator
import
EndomorphicOperator
from
.inversion_enabler
import
InversionEnabler
from
.inversion_enabler
import
InversionEnabler
import
numpy
as
np
import
numpy
as
np
class
SamplingEnabler2
(
InversionEnabler
):
class
SamplingEnabler2
(
EndomorphicOperator
):
"""Class which augments the capability of another operator object via
"""Class which augments the capability of another operator object via
numerical inversion.
numerical inversion.
...
@@ -43,13 +45,27 @@ class SamplingEnabler2(InversionEnabler):
...
@@ -43,13 +45,27 @@ class SamplingEnabler2(InversionEnabler):
convergence.
convergence.
"""
"""
def
__init__
(
self
,
op
,
application_inverter
,
sampling_inverter
,
approximation
=
None
):
def
__init__
(
self
,
op
,
sampling_inverter
,
approximation
=
None
):
super
(
SamplingEnabler2
,
self
).
__init__
(
op
,
application_inverter
,
approximation
=
approximation
)
super
(
SamplingEnabler2
,
self
).
__init__
()
self
.
sampling_op
=
InversionEnabler
(
op
,
sampling_inverter
,
approximation
=
approximation
)
self
.
_op
=
op
self
.
_sampling_op
=
InversionEnabler
(
op
,
sampling_inverter
,
approximation
=
approximation
)
def
draw_sample
(
self
,
from_inverse
=
False
,
dtype
=
np
.
float64
):
def
draw_sample
(
self
,
from_inverse
=
False
,
dtype
=
np
.
float64
):
try
:
try
:
return
self
.
_op
.
draw_sample
(
from_inverse
,
dtype
)
return
self
.
_op
.
draw_sample
(
from_inverse
,
dtype
)
except
NotImplementedError
:
except
NotImplementedError
:
samp
=
self
.
_op
.
draw_sample
(
not
from_inverse
,
dtype
)
samp
=
self
.
_op
.
draw_sample
(
not
from_inverse
,
dtype
)
return
self
.
sampling_op
.
inverse_times
(
samp
)
if
from_inverse
else
self
(
samp
)
return
self
.
_sampling_op
.
inverse_times
(
samp
)
\
if
from_inverse
else
self
(
samp
)
@
property
def
domain
(
self
):
return
self
.
_op
.
domain
@
property
def
capability
(
self
):
return
self
.
_op
.
capability
def
apply
(
self
,
x
,
mode
):
return
self
.
_op
.
apply
(
x
,
mode
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment