Commit 50e5d593 authored by Martin Reinecke's avatar Martin Reinecke
Browse files

solve conflicts

parents e042fc28 e71ecace
Pipeline #74536 passed with stages
in 30 minutes and 8 seconds
......@@ -43,6 +43,13 @@ test_serial:
- >
grep TOTAL coverage.txt | awk '{ print "TOTAL: "$4; }'
test_mpi:
stage: test
variables:
OMPI_MCA_btl_vader_single_copy_mechanism: none
script:
- mpiexec -n 2 --bind-to none pytest-3 -q test/test_mpi
pages:
stage: release
script:
......
......@@ -7,6 +7,13 @@ When going to harmonic space, NIFTy's FFT operator now uses a minus sign in the
exponent (and, consequently, a plus sign on the adjoint transform). This
convention is consistent with almost all other numerical FFT libraries.
Interface change in EndomorphicOperator.draw_sample()
=====================================================
This method now requires a `dtype` argument to be passed.
As a consequence, `dtype` moves to the first place of the argument list.
(This of course applies to all derived classes as well.)
MPI parallelisation over samples in MetricGaussianKL
====================================================
......
%% Cell type:markdown id: tags:
# A NIFTy demonstration
%% Cell type:markdown id: tags:
## IFT: Big Picture
IFT starting point:
$$d = Rs+n$$
Typically, $s$ is a continuous field, $d$ a discrete data vector. Particularly, $R$ is not invertible.
IFT aims at **inverting** the above uninvertible problem in the **best possible way** using Bayesian statistics.
## NIFTy
NIFTy (Numerical Information Field Theory) is a Python framework in which IFT problems can be tackled easily.
Main Interfaces:
- **Spaces**: Cartesian, 2-Spheres (Healpix, Gauss-Legendre) and their respective harmonic spaces.
- **Fields**: Defined on spaces.
- **Operators**: Acting on fields.
%% Cell type:markdown id: tags:
## Wiener Filter: Formulae
### Assumptions
- $d=Rs+n$, $R$ linear operator.
- $\mathcal P (s) = \mathcal G (s,S)$, $\mathcal P (n) = \mathcal G (n,N)$ where $S, N$ are positive definite matrices.
### Posterior
The Posterior is given by:
$$\mathcal P (s|d) \propto P(s,d) = \mathcal G(d-Rs,N) \,\mathcal G(s,S) \propto \mathcal G (s-m,D) $$
where
$$\begin{align}
m &= Dj \\
D^{-1}&= (S^{-1} +R^\dagger N^{-1} R )\\
j &= R^\dagger N^{-1} d
\end{align}$$
Let us implement this in NIFTy!
%% Cell type:markdown id: tags:
## Wiener Filter: Example
- We assume statistical homogeneity and isotropy. Therefore the signal covariance $S$ is diagonal in harmonic space, and is described by a one-dimensional power spectrum, assumed here as $$P(k) = P_0\,\left(1+\left(\frac{k}{k_0}\right)^2\right)^{-\gamma /2},$$
with $P_0 = 0.2, k_0 = 5, \gamma = 4$.
- $N = 0.2 \cdot \mathbb{1}$.
- Number of data points $N_{pix} = 512$.
- reconstruction in harmonic space.
- Response operator:
$$R = FFT_{\text{harmonic} \rightarrow \text{position}}$$
%% Cell type:code id: tags:
``` python
N_pixels = 512 # Number of pixels
def pow_spec(k):
P0, k0, gamma = [.2, 5, 4]
return P0 / ((1. + (k/k0)**2)**(gamma / 2))
```
%% Cell type:markdown id: tags:
## Wiener Filter: Implementation
%% Cell type:markdown id: tags:
### Import Modules
%% Cell type:code id: tags:
``` python
import numpy as np
import nifty6 as ift
import matplotlib.pyplot as plt
%matplotlib inline
```
%% Cell type:markdown id: tags:
### Implement Propagator
%% Cell type:code id: tags:
``` python
def Curvature(R, N, Sh):
IC = ift.GradientNormController(iteration_limit=50000,
tol_abs_gradnorm=0.1)
# WienerFilterCurvature is (R.adjoint*N.inverse*R + Sh.inverse) plus some handy
# helper methods.
return ift.WienerFilterCurvature(R,N,Sh,iteration_controller=IC,iteration_controller_sampling=IC)
```
%% Cell type:markdown id: tags:
### Conjugate Gradient Preconditioning
- $D$ is defined via:
$$D^{-1} = \mathcal S_h^{-1} + R^\dagger N^{-1} R.$$
In the end, we want to apply $D$ to $j$, i.e. we need the inverse action of $D^{-1}$. This is done numerically (algorithm: *Conjugate Gradient*).
<!--
- One can define the *condition number* of a non-singular and normal matrix $A$:
$$\kappa (A) := \frac{|\lambda_{\text{max}}|}{|\lambda_{\text{min}}|},$$
where $\lambda_{\text{max}}$ and $\lambda_{\text{min}}$ are the largest and smallest eigenvalue of $A$, respectively.
- The larger $\kappa$ the slower Conjugate Gradient.
- By default, conjugate gradient solves: $D^{-1} m = j$ for $m$, where $D^{-1}$ can be badly conditioned. If one knows a non-singular matrix $T$ for which $TD^{-1}$ is better conditioned, one can solve the equivalent problem:
$$\tilde A m = \tilde j,$$
where $\tilde A = T D^{-1}$ and $\tilde j = Tj$.
- In our case $S^{-1}$ is responsible for the bad conditioning of $D$ depending on the chosen power spectrum. Thus, we choose
$$T = \mathcal F^\dagger S_h^{-1} \mathcal F.$$
-->
%% Cell type:markdown id: tags:
### Generate Mock data
- Generate a field $s$ and $n$ with given covariances.
- Calculate $d$.
%% Cell type:code id: tags:
``` python
s_space = ift.RGSpace(N_pixels)
h_space = s_space.get_default_codomain()
HT = ift.HarmonicTransformOperator(h_space, target=s_space)
# Operators
Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)
R = HT #*ift.create_harmonic_smoothing_operator((h_space,), 0, 0.02)
# Fields and data
sh = Sh.draw_sample()
sh = Sh.draw_sample(dtype=np.float64)
noiseless_data=R(sh)
noise_amplitude = np.sqrt(0.2)
N = ift.ScalingOperator(s_space, noise_amplitude**2)
n = ift.Field.from_random(domain=s_space, random_type='normal',
std=noise_amplitude, mean=0)
d = noiseless_data + n
j = R.adjoint_times(N.inverse_times(d))
curv = Curvature(R=R, N=N, Sh=Sh)
D = curv.inverse
```
%% Cell type:markdown id: tags:
### Run Wiener Filter
%% Cell type:code id: tags:
``` python
m = D(j)
```
%% Cell type:markdown id: tags:
### Signal Reconstruction
%% Cell type:code id: tags:
``` python
# Get signal data and reconstruction data
s_data = HT(sh).val
m_data = HT(m).val
d_data = d.val
plt.figure(figsize=(15,10))
plt.plot(s_data, 'r', label="Signal", linewidth=3)
plt.plot(d_data, 'k.', label="Data")
plt.plot(m_data, 'k', label="Reconstruction",linewidth=3)
plt.title("Reconstruction")
plt.legend()
plt.show()
```
%% Cell type:code id: tags:
``` python
plt.figure(figsize=(15,10))
plt.plot(s_data - s_data, 'r', label="Signal", linewidth=3)
plt.plot(d_data - s_data, 'k.', label="Data")
plt.plot(m_data - s_data, 'k', label="Reconstruction",linewidth=3)
plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)
plt.title("Residuals")
plt.legend()
plt.show()
```
%% Cell type:markdown id: tags:
### Power Spectrum
%% Cell type:code id: tags:
``` python
s_power_data = ift.power_analyze(sh).val
m_power_data = ift.power_analyze(m).val
plt.figure(figsize=(15,10))
plt.loglog()
plt.xlim(1, int(N_pixels/2))
ymin = min(m_power_data)
plt.ylim(ymin, 1)
xs = np.arange(1,int(N_pixels/2),.1)
plt.plot(xs, pow_spec(xs), label="True Power Spectrum", color='k',alpha=0.5)
plt.plot(s_power_data, 'r', label="Signal")
plt.plot(m_power_data, 'k', label="Reconstruction")
plt.axhline(noise_amplitude**2 / N_pixels, color="k", linestyle='--', label="Noise level", alpha=.5)
plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)
plt.title("Power Spectrum")
plt.legend()
plt.show()
```
%% Cell type:markdown id: tags:
## Wiener Filter on Incomplete Data
%% Cell type:code id: tags:
``` python
# Operators
Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)
N = ift.ScalingOperator(s_space, noise_amplitude**2)
# R is defined below
# Fields
sh = Sh.draw_sample()
sh = Sh.draw_sample(dtype=np.float64)
s = HT(sh)
n = ift.Field.from_random(domain=s_space, random_type='normal',
std=noise_amplitude, mean=0)
```
%% Cell type:markdown id: tags:
### Partially Lose Data
%% Cell type:code id: tags:
``` python
l = int(N_pixels * 0.2)
h = int(N_pixels * 0.2 * 2)
mask = np.full(s_space.shape, 1.)
mask[l:h] = 0
mask = ift.Field.from_raw(s_space, mask)
R = ift.DiagonalOperator(mask)(HT)
n = n.val_rw()
n[l:h] = 0
n = ift.Field.from_raw(s_space, n)
d = R(sh) + n
```
%% Cell type:code id: tags:
``` python
curv = Curvature(R=R, N=N, Sh=Sh)
D = curv.inverse
j = R.adjoint_times(N.inverse_times(d))
m = D(j)
```
%% Cell type:markdown id: tags:
### Compute Uncertainty
%% Cell type:code id: tags:
``` python
m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 200)
m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 200, np.float64)
```
%% Cell type:markdown id: tags:
### Get data
%% Cell type:code id: tags:
``` python
# Get signal data and reconstruction data
s_data = s.val
m_data = HT(m).val
m_var_data = m_var.val
uncertainty = np.sqrt(m_var_data)
d_data = d.val_rw()
# Set lost data to NaN for proper plotting
d_data[d_data == 0] = np.nan
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(15,10))
plt.axvspan(l, h, facecolor='0.8',alpha=0.5)
plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0.5', alpha=0.5)
plt.plot(s_data, 'r', label="Signal", alpha=1, linewidth=3)
plt.plot(d_data, 'k.', label="Data")
plt.plot(m_data, 'k', label="Reconstruction", linewidth=3)
plt.title("Reconstruction of incomplete data")
plt.legend()
```
%% Cell type:markdown id: tags:
# 2d Example
%% Cell type:code id: tags:
``` python
N_pixels = 256 # Number of pixels
sigma2 = 2. # Noise variance
def pow_spec(k):
P0, k0, gamma = [.2, 2, 4]
return P0 * (1. + (k/k0)**2)**(-gamma/2)
s_space = ift.RGSpace([N_pixels, N_pixels])
```
%% Cell type:code id: tags:
``` python
h_space = s_space.get_default_codomain()
HT = ift.HarmonicTransformOperator(h_space,s_space)
# Operators
Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)
N = ift.ScalingOperator(s_space, sigma2)
# Fields and data
sh = Sh.draw_sample()
sh = Sh.draw_sample(dtype=np.float64)
n = ift.Field.from_random(domain=s_space, random_type='normal',
std=np.sqrt(sigma2), mean=0)
# Lose some data
l = int(N_pixels * 0.33)
h = int(N_pixels * 0.33 * 2)
mask = np.full(s_space.shape, 1.)
mask[l:h,l:h] = 0.
mask = ift.Field.from_raw(s_space, mask)
R = ift.DiagonalOperator(mask)(HT)
n = n.val_rw()
n[l:h, l:h] = 0
n = ift.Field.from_raw(s_space, n)
curv = Curvature(R=R, N=N, Sh=Sh)
D = curv.inverse
d = R(sh) + n
j = R.adjoint_times(N.inverse_times(d))
# Run Wiener filter
m = D(j)
# Uncertainty
m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 20)
m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 20, np.float64)
# Get data
s_data = HT(sh).val
m_data = HT(m).val
m_var_data = m_var.val
d_data = d.val
uncertainty = np.sqrt(np.abs(m_var_data))
```
%% Cell type:code id: tags:
``` python
cm = ['magma', 'inferno', 'plasma', 'viridis'][1]
mi = np.min(s_data)
ma = np.max(s_data)
fig, axes = plt.subplots(1, 2, figsize=(15, 7))
data = [s_data, d_data]
caption = ["Signal", "Data"]
for ax in axes.flat:
im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi,
vmax=ma)
ax.set_title(caption.pop(0))
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
```
%% Cell type:code id: tags:
``` python
mi = np.min(s_data)
ma = np.max(s_data)
fig, axes = plt.subplots(3, 2, figsize=(15, 22.5))
sample = HT(curv.draw_sample(from_inverse=True)+m).val
sample = HT(curv.draw_sample(dtype=np.float64, from_inverse=True)+m).val
post_mean = (m_mean + HT(m)).val
data = [s_data, m_data, post_mean, sample, s_data - m_data, uncertainty]
caption = ["Signal", "Reconstruction", "Posterior mean", "Sample", "Residuals", "Uncertainty Map"]
for ax in axes.flat:
im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi, vmax=ma)
ax.set_title(caption.pop(0))
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
```
%% Cell type:markdown id: tags:
### Is the uncertainty map reliable?
%% Cell type:code id: tags:
``` python
precise = (np.abs(s_data-m_data) < uncertainty)
print("Error within uncertainty map bounds: " + str(np.sum(precise) * 100 / N_pixels**2) + "%")
plt.figure(figsize=(15,10))
plt.imshow(precise.astype(float), cmap="brg")
plt.colorbar()
```
%% Cell type:markdown id: tags:
# Start Coding
## NIFTy Repository + Installation guide
https://gitlab.mpcdf.mpg.de/ift/NIFTy
NIFTy v5 **more or less stable!**
......
......@@ -114,8 +114,8 @@ if __name__ == '__main__':
N = ift.ScalingOperator(data_space, noise)
# Create mock data
MOCK_SIGNAL = S.draw_sample()
MOCK_NOISE = N.draw_sample()
MOCK_SIGNAL = S.draw_sample(dtype=np.float64)
MOCK_NOISE = N.draw_sample(dtype=np.float64)
data = R(MOCK_SIGNAL) + MOCK_NOISE
# Build inverse propagator D and information source j
......
......@@ -99,7 +99,7 @@ if __name__ == '__main__':
# Generate mock signal and data
mock_position = ift.from_random('normal', signal_response.domain)
data = signal_response(mock_position) + N.draw_sample()
data = signal_response(mock_position) + N.draw_sample(dtype=np.float64)
# Minimization parameters
ic_sampling = ift.AbsDeltaEnergyController(
......
......@@ -98,7 +98,7 @@ if __name__ == '__main__':
# Generate mock signal and data
mock_position = ift.from_random('normal', signal_response.domain)
data = signal_response(mock_position) + N.draw_sample()
data = signal_response(mock_position) + N.draw_sample(dtype=np.float64)
plot = ift.Plot()
plot.add(signal(mock_position), title='Ground Truth')
......
......@@ -113,7 +113,7 @@ if __name__ == '__main__':
# Draw posterior samples
metric = Ham(ift.Linearization.make_var(H.position, want_metric=True)).metric
samples = [metric.draw_sample(from_inverse=True) + H.position
samples = [metric.draw_sample(dtype=np.float64, from_inverse=True) + H.position
for _ in range(N_samples)]
# Plotting
......
......@@ -50,7 +50,7 @@ class Field(Operator):
raise TypeError("domain must be of type DomainTuple")
if not isinstance(val, np.ndarray):
if np.isscalar(val):
val = np.full(domain.shape, val)
val = np.broadcast_to(val, domain.shape)
else:
raise TypeError("val must be of type numpy.ndarray")
if domain.shape != val.shape:
......
......@@ -50,7 +50,7 @@ def _allreduce_sum_field(comm, fld):
if comm is None:
return fld
if isinstance(fld, Field):
return Field(fld.domain, _np_allreduce_sum(fld.val))
return Field(fld.domain, _np_allreduce_sum(comm, fld.val))
res = tuple(
Field(f.domain, _np_allreduce_sum(comm, f.val))
for f in fld.values())
......@@ -67,8 +67,8 @@ class _KLMetric(EndomorphicOperator):
self._check_input(x, mode)
return self._KL.apply_metric(x)
def draw_sample(self, from_inverse=False, dtype=np.float64):
return self._KL._metric_sample(from_inverse, dtype)
def draw_sample(self, dtype, from_inverse=False):
return self._KL._metric_sample(dtype, from_inverse)
class MetricGaussianKL(Energy):
......@@ -180,7 +180,7 @@ class MetricGaussianKL(Energy):
for i in range(self._lo, self._hi):
with random.Context(sseq[i]):
_local_samples.append(met.draw_sample(
from_inverse=True, dtype=lh_sampling_dtype))
dtype=lh_sampling_dtype, from_inverse=True))
_local_samples = tuple(_local_samples)
else:
if len(_local_samples) != self._hi-self._lo:
......@@ -264,7 +264,7 @@ class MetricGaussianKL(Energy):
if self._mirror_samples:
yield -s
def _metric_sample(self, from_inverse=False, dtype=np.float64):
def _metric_sample(self, dtype, from_inverse=False):
if from_inverse:
raise NotImplementedError()
lin = self._lin.with_want_metric()
......@@ -272,7 +272,7 @@ class MetricGaussianKL(Energy):
sseq = random.spawn_sseq(self._n_samples)
for i, v in enumerate(self._local_samples):
with random.Context(sseq[self._lo+i]):
samp = samp + self._hamiltonian(lin+v).metric.draw_sample(from_inverse=False, dtype=dtype)
samp = samp + self._hamiltonian(lin+v).metric.draw_sample(dtype=dtype, from_inverse=False)
if self._mirror_samples:
samp = samp + self._hamiltonian(lin-v).metric.draw_sample(from_inverse=False, dtype=dtype)
samp = samp + self._hamiltonian(lin-v).metric.draw_sample(dtype=dtype, from_inverse=False)
return _allreduce_sum_field(self._comm, samp)/self._n_eff_samples
......@@ -34,9 +34,9 @@ class QuadraticEnergy(Energy):
else:
Ax = self._A(self._position)
self._grad = Ax if b is None else Ax - b
self._value = 0.5*self._position.s_vdot(Ax)
self._value = 0.5*self._position.s_vdot(Ax).real
if b is not None:
self._value -= b.s_vdot(self._position)
self._value -= b.s_vdot(self._position).real
def at(self, position):
return QuadraticEnergy(position, self._A, self._b)
......
......@@ -48,10 +48,10 @@ class BlockDiagonalOperator(EndomorphicOperator):
for op, v in zip(self._ops, x.values()))
return MultiField(self._domain, val)
def draw_sample(self, from_inverse=False, dtype=np.float64):
def draw_sample(self, dtype, from_inverse=False):
from ..sugar import from_random
val = tuple(
op.draw_sample(from_inverse, dtype)
op.draw_sample(dtype, from_inverse)
if op is not None