diff --git a/src/minimization/metric_gaussian_kl.py b/src/minimization/metric_gaussian_kl.py index 5b60e5f9a68fea4cb38ced0b1e33f5d181142801..6f6866425a37099ea853e205a413cd745b4a8bb4 100644 --- a/src/minimization/metric_gaussian_kl.py +++ b/src/minimization/metric_gaussian_kl.py @@ -38,9 +38,6 @@ class _KLMetric(EndomorphicOperator): self._check_input(x, mode) return self._KL.apply_metric(x) - def draw_sample(self, from_inverse=False): - return self._KL._metric_sample(from_inverse) - def _get_lo_hi(comm, n_samples): ntask, rank, _ = utilities.get_MPI_params_from_comm(comm) @@ -260,22 +257,3 @@ class MetricGaussianKL(Energy): yield s if self._mirror_samples: yield -s - - def _metric_sample(self, from_inverse=False): - if from_inverse: - raise NotImplementedError() - s = ('This draws from the Hamiltonian used for evaluation and does ' - ' not take point_estimates into accout. Make sure that this ' - 'is your intended use.') - logger.warning(s) - lin = Linearization.make_var(self.position, True) - samp = [] - sseq = random.spawn_sseq(self._n_samples) - for i, s in enumerate(self._local_samples): - s = _modify_sample_domain(s, self._hamiltonian.domain) - with random.Context(sseq[self._lo+i]): - tmp = self._hamiltonian(lin+s).metric.draw_sample(from_inverse=False) - if self._mirror_samples: - tmp = tmp + self._hamiltonian(lin-s).metric.draw_sample(from_inverse=False) - samp.append(tmp) - return utilities.allreduce_sum(samp, self._comm)/self.n_eff_samples