diff --git a/demos/bernoulli_demo.py b/demos/bernoulli_demo.py index f423bd3be3a6f4d17f1a0563f16958f6aea14481..700b377c6b4987c0b787c7a7e77a8f26729e793b 100644 --- a/demos/bernoulli_demo.py +++ b/demos/bernoulli_demo.py @@ -73,7 +73,7 @@ if __name__ == '__main__': # Minimize the Hamiltonian H = ift.Hamiltonian(likelihood, ic_sampling) - H = ift.EnergyAdapter(position, H) + H = ift.EnergyAdapter(position, H, want_metric=True) # minimizer = ift.L_BFGS(ic_newton) H, convergence = minimizer(H) diff --git a/demos/getting_started_2.py b/demos/getting_started_2.py index 947a3da04e5cfb2f26cd74607e99df15d3002e71..467fbedc044c8902e3c4ce71d7020ac810fb574f 100644 --- a/demos/getting_started_2.py +++ b/demos/getting_started_2.py @@ -93,7 +93,7 @@ if __name__ == '__main__': # Minimize the Hamiltonian H = ift.Hamiltonian(likelihood) - H = ift.EnergyAdapter(position, H) + H = ift.EnergyAdapter(position, H, want_metric=True) H, convergence = minimizer(H) # Plot results diff --git a/demos/getting_started_3.py b/demos/getting_started_3.py index e613a4803129c000a7ee418e531cc9a54bd5b9c1..4b9b7e59ab180f39e522b771552e75117397964b 100644 --- a/demos/getting_started_3.py +++ b/demos/getting_started_3.py @@ -91,30 +91,24 @@ if __name__ == '__main__': # number of samples used to estimate the KL N_samples = 20 for i in range(2): - metric = H(ift.Linearization.make_var(position)).metric - samples = [ - metric.draw_sample(from_inverse=True) for _ in range(N_samples) - ] - - KL = ift.SampledKullbachLeiblerDivergence(H, samples) - KL = ift.EnergyAdapter(position, KL) + KL = ift.KL_Energy(position, H, N_samples, want_metric=True) KL, convergence = minimizer(KL) position = KL.position plot = ift.Plot() - plot.add(signal(position), title="reconstruction") - plot.add([A(position), A(MOCK_POSITION)], title="power") + plot.add(signal(KL.position), title="reconstruction") + plot.add([A(KL.position), A(MOCK_POSITION)], title="power") plot.output(ny=1, ysize=6, xsize=16, name="loop.png") plot = ift.Plot() sc = ift.StatCalculator() - for sample in samples: - sc.add(signal(sample+position)) + for sample in KL.samples: + sc.add(signal(sample+KL.position)) plot.add(sc.mean, title="Posterior Mean") plot.add(ift.sqrt(sc.var), title="Posterior Standard Deviation") - powers = [A(s+position) for s in samples] + powers = [A(s+KL.position) for s in KL.samples] plot.add( - [A(position), A(MOCK_POSITION)]+powers, + [A(KL.position), A(MOCK_POSITION)]+powers, title="Sampled Posterior Power Spectrum") plot.output(ny=1, nx=3, xsize=24, ysize=6, name="results.png") diff --git a/demos/polynomial_fit.py b/demos/polynomial_fit.py index f49cbec8b0a9e26810ae3e5e65cf51cd226aaaf8..403269c791db3b55c9327264cdb8c30c6d050c1c 100644 --- a/demos/polynomial_fit.py +++ b/demos/polynomial_fit.py @@ -86,15 +86,16 @@ N = ift.DiagonalOperator(ift.from_global_data(d_space, var)) IC = ift.GradientNormController(tol_abs_gradnorm=1e-8) likelihood = ift.GaussianEnergy(d, N)(R) -H = ift.Hamiltonian(likelihood, IC) -H = ift.EnergyAdapter(params, H, IC) +Ham = ift.Hamiltonian(likelihood, IC) +H = ift.EnergyAdapter(params, Ham, want_metric=True) # Minimize minimizer = ift.NewtonCG(IC) H, _ = minimizer(H) # Draw posterior samples -samples = [H.metric.draw_sample(from_inverse=True) + H.position +metric = Ham(ift.Linearization.make_var(H.position, want_metric=True)).metric +samples = [metric.draw_sample(from_inverse=True) + H.position for _ in range(N_samples)] # Plotting diff --git a/nifty5/__init__.py b/nifty5/__init__.py index 231d2636828da0049fb4538c9f8230b2761fa215..8019ecbcf77ac36636bc92a590b2bb95c3ebf705 100644 --- a/nifty5/__init__.py +++ b/nifty5/__init__.py @@ -67,6 +67,7 @@ from .minimization.energy import Energy from .minimization.quadratic_energy import QuadraticEnergy from .minimization.line_energy import LineEnergy from .minimization.energy_adapter import EnergyAdapter +from .minimization.kl_energy import KL_Energy from .sugar import * from .plotting.plot import Plot diff --git a/nifty5/extra/energy_and_model_tests.py b/nifty5/extra/energy_and_model_tests.py index 60022c10129a337759b102e3c6622e7518e56692..f151e5756a659ee558128499d9af103c13f93d85 100644 --- a/nifty5/extra/energy_and_model_tests.py +++ b/nifty5/extra/energy_and_model_tests.py @@ -41,7 +41,7 @@ def _get_acceptable_location(op, loc, lin): for i in range(50): try: loc2 = loc+dir - lin2 = op(Linearization.make_var(loc2)) + lin2 = op(Linearization.make_var(loc2, lin.want_metric)) if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20: break except FloatingPointError: @@ -54,14 +54,14 @@ def _get_acceptable_location(op, loc, lin): def _check_consistency(op, loc, tol, ntries, do_metric): for _ in range(ntries): - lin = op(Linearization.make_var(loc)) + lin = op(Linearization.make_var(loc, do_metric)) loc2, lin2 = _get_acceptable_location(op, loc, lin) dir = loc2-loc locnext = loc2 dirnorm = dir.norm() for i in range(50): locmid = loc + 0.5*dir - linmid = op(Linearization.make_var(locmid)) + linmid = op(Linearization.make_var(locmid, do_metric)) dirder = linmid.jac(dir) numgrad = (lin2.val-lin.val) xtol = tol * dirder.norm() / np.sqrt(dirder.size) diff --git a/nifty5/library/inverse_gamma_model.py b/nifty5/library/inverse_gamma_model.py index 9be2acce1a7b4aad7e292849034cca8cd10a60b0..831546453062e734b0e708dd33245e5fd13304e2 100644 --- a/nifty5/library/inverse_gamma_model.py +++ b/nifty5/library/inverse_gamma_model.py @@ -53,7 +53,7 @@ class InverseGammaModel(Operator): outer = 1/outer_inv jac = makeOp(Field.from_local_data(self._domain, inner*outer)) jac = jac(x.jac) - return Linearization(points, jac) + return x.new(points, jac) @staticmethod def IG(field, alpha, q): diff --git a/nifty5/linearization.py b/nifty5/linearization.py index aa98d156f9d04ef3e5e29a7ee5ec7d5049affec7..691d7f386d3ad197209a22f17d46283fff2fd39c 100644 --- a/nifty5/linearization.py +++ b/nifty5/linearization.py @@ -9,13 +9,17 @@ from .sugar import makeOp class Linearization(object): - def __init__(self, val, jac, metric=None): + def __init__(self, val, jac, metric=None, want_metric=False): self._val = val self._jac = jac if self._val.domain != self._jac.target: raise ValueError("domain mismatch") + self._want_metric = want_metric self._metric = metric + def new(self, val, jac, metric=None): + return Linearization(val, jac, metric, self._want_metric) + @property def domain(self): return self._jac.domain @@ -37,6 +41,10 @@ class Linearization(object): """Only available if target is a scalar""" return self._jac.adjoint_times(Field.scalar(1.)) + @property + def want_metric(self): + return self._want_metric + @property def metric(self): """Only available if target is a scalar""" @@ -44,35 +52,34 @@ class Linearization(object): def __getitem__(self, name): from .operators.simple_linear_operators import FieldAdapter - return Linearization(self._val[name], FieldAdapter(self.domain, name)) + return self.new(self._val[name], FieldAdapter(self.domain, name)) def __neg__(self): - return Linearization( - -self._val, -self._jac, - None if self._metric is None else -self._metric) + return self.new(-self._val, -self._jac, + None if self._metric is None else -self._metric) def conjugate(self): - return Linearization( + return self.new( self._val.conjugate(), self._jac.conjugate(), None if self._metric is None else self._metric.conjugate()) @property def real(self): - return Linearization(self._val.real, self._jac.real) + return self.new(self._val.real, self._jac.real) def _myadd(self, other, neg): if isinstance(other, Linearization): met = None if self._metric is not None and other._metric is not None: met = self._metric._myadd(other._metric, neg) - return Linearization( + return self.new( self._val.flexible_addsub(other._val, neg), self._jac._myadd(other._jac, neg), met) if isinstance(other, (int, float, complex, Field, MultiField)): if neg: - return Linearization(self._val-other, self._jac, self._metric) + return self.new(self._val-other, self._jac, self._metric) else: - return Linearization(self._val+other, self._jac, self._metric) + return self.new(self._val+other, self._jac, self._metric) def __add__(self, other): return self._myadd(other, False) @@ -98,7 +105,7 @@ class Linearization(object): if isinstance(other, Linearization): if self.target != other.target: raise ValueError("domain mismatch") - return Linearization( + return self.new( self._val*other._val, (makeOp(other._val)(self._jac))._myadd( makeOp(self._val)(other._jac), False)) @@ -106,11 +113,11 @@ class Linearization(object): if other == 1: return self met = None if self._metric is None else self._metric.scale(other) - return Linearization(self._val*other, self._jac.scale(other), met) + return self.new(self._val*other, self._jac.scale(other), met) if isinstance(other, (Field, MultiField)): if self.target != other.domain: raise ValueError("domain mismatch") - return Linearization(self._val*other, makeOp(other)(self._jac)) + return self.new(self._val*other, makeOp(other)(self._jac)) def __rmul__(self, other): return self.__mul__(other) @@ -118,46 +125,48 @@ class Linearization(object): def vdot(self, other): from .operators.simple_linear_operators import VdotOperator if isinstance(other, (Field, MultiField)): - return Linearization( + return self.new( Field.scalar(self._val.vdot(other)), VdotOperator(other)(self._jac)) - return Linearization( + return self.new( Field.scalar(self._val.vdot(other._val)), VdotOperator(self._val)(other._jac) + VdotOperator(other._val)(self._jac)) def sum(self): from .operators.simple_linear_operators import SumReductionOperator - return Linearization( + return self.new( Field.scalar(self._val.sum()), SumReductionOperator(self._jac.target)(self._jac)) def exp(self): tmp = self._val.exp() - return Linearization(tmp, makeOp(tmp)(self._jac)) + return self.new(tmp, makeOp(tmp)(self._jac)) def log(self): tmp = self._val.log() - return Linearization(tmp, makeOp(1./self._val)(self._jac)) + return self.new(tmp, makeOp(1./self._val)(self._jac)) def tanh(self): tmp = self._val.tanh() - return Linearization(tmp, makeOp(1.-tmp**2)(self._jac)) + return self.new(tmp, makeOp(1.-tmp**2)(self._jac)) def positive_tanh(self): tmp = self._val.tanh() tmp2 = 0.5*(1.+tmp) - return Linearization(tmp2, makeOp(0.5*(1.-tmp**2))(self._jac)) + return self.new(tmp2, makeOp(0.5*(1.-tmp**2))(self._jac)) def add_metric(self, metric): - return Linearization(self._val, self._jac, metric) + return self.new(self._val, self._jac, metric) @staticmethod - def make_var(field): + def make_var(field, want_metric=False): from .operators.scaling_operator import ScalingOperator - return Linearization(field, ScalingOperator(1., field.domain)) + return Linearization(field, ScalingOperator(1., field.domain), + want_metric=want_metric) @staticmethod - def make_const(field): + def make_const(field, want_metric=False): from .operators.simple_linear_operators import NullOperator - return Linearization(field, NullOperator(field.domain, field.domain)) + return Linearization(field, NullOperator(field.domain, field.domain), + want_metric=want_metric) diff --git a/nifty5/minimization/conjugate_gradient.py b/nifty5/minimization/conjugate_gradient.py index 9a621917c4234c2bd8f0aa30d2a55f09e39728c8..f2487a3dde1aba9298ab2b3dccc4a2b967f8cf7c 100644 --- a/nifty5/minimization/conjugate_gradient.py +++ b/nifty5/minimization/conjugate_gradient.py @@ -75,7 +75,7 @@ class ConjugateGradient(Minimizer): return energy, controller.CONVERGED while True: - q = energy.metric(d) + q = energy.apply_metric(d) ddotq = d.vdot(q).real if ddotq == 0.: logger.error("Error: ConjugateGradient: ddotq==0.") diff --git a/nifty5/minimization/descent_minimizers.py b/nifty5/minimization/descent_minimizers.py index 5eddad19ca680e5111393709236825d8048e8ade..bc0da9017747c69e2c0a744fa116d94927c94a6c 100644 --- a/nifty5/minimization/descent_minimizers.py +++ b/nifty5/minimization/descent_minimizers.py @@ -180,7 +180,7 @@ class NewtonCG(DescentMinimizer): while True: if abs(ri).sum() <= termcond: return xsupi - Ap = energy.metric(psupi) + Ap = energy.apply_metric(psupi) # check curvature curv = psupi.vdot(Ap) if 0 <= curv <= 3*float64eps: diff --git a/nifty5/minimization/energy.py b/nifty5/minimization/energy.py index c213a6e8f71396e3a508e8abb778b5649a275db4..cfa59fb552dcfc3df8f37503bb765037834ed47a 100644 --- a/nifty5/minimization/energy.py +++ b/nifty5/minimization/energy.py @@ -109,6 +109,20 @@ class Energy(NiftyMetaBase()): """ raise NotImplementedError + def apply_metric(self, x): + """ + Parameters + ---------- + x: Field/MultiField + Argument for the metric operator + + Returns + ------- + Field/MultiField: + Output of the metric operator + """ + raise NotImplementedError + def longest_step(self, dir): """Returns the longest allowed step size along `dir` diff --git a/nifty5/minimization/energy_adapter.py b/nifty5/minimization/energy_adapter.py index f85d2e9d8c215a034319949190a5d8f2c063633e..985459cc56f162fe7b5306577d605b598129e4fc 100644 --- a/nifty5/minimization/energy_adapter.py +++ b/nifty5/minimization/energy_adapter.py @@ -8,58 +8,38 @@ from ..operators.scaling_operator import ScalingOperator class EnergyAdapter(Energy): - def __init__(self, position, op, controller=None, preconditioner=None, - constants=[]): + def __init__(self, position, op, constants=[], want_metric=False): super(EnergyAdapter, self).__init__(position) self._op = op - self._val = self._grad = self._metric = None - self._controller = controller - self._preconditioner = preconditioner self._constants = constants - - def at(self, position): - return EnergyAdapter(position, self._op, self._controller, - self._preconditioner, self._constants) - - def _fill_all(self): + self._want_metric = want_metric if len(self._constants) == 0: - tmp = self._op(Linearization.make_var(self._position)) + tmp = self._op(Linearization.make_var(self._position, want_metric)) else: ops = [ScalingOperator(0. if key in self._constants else 1., dom) for key, dom in self._position.domain.items()] bdop = BlockDiagonalOperator(self._position.domain, tuple(ops)) - tmp = self._op(Linearization(self._position, bdop)) + tmp = self._op(Linearization(self._position, bdop, + want_metric=want_metric)) self._val = tmp.val.local_data[()] self._grad = tmp.gradient - if self._controller is not None: - from ..operators.linear_operator import LinearOperator - from ..operators.inversion_enabler import InversionEnabler + self._metric = tmp._metric - if self._preconditioner is None: - precond = None - elif isinstance(self._preconditioner, LinearOperator): - precond = self._preconditioner - elif isinstance(self._preconditioner, Energy): - precond = self._preconditioner.at(self._position).metric - self._metric = InversionEnabler(tmp._metric, self._controller, - precond) - else: - self._metric = tmp._metric + def at(self, position): + return EnergyAdapter(position, self._op, self._constants, + self._want_metric) @property def value(self): - if self._val is None: - self._val = self._op(self._position).local_data[()] return self._val @property def gradient(self): - if self._grad is None: - self._fill_all() return self._grad @property def metric(self): - if self._metric is None: - self._fill_all() return self._metric + + def apply_metric(self, x): + return self._metric(x) diff --git a/nifty5/minimization/kl_energy.py b/nifty5/minimization/kl_energy.py new file mode 100644 index 0000000000000000000000000000000000000000..d7a98364d6024cbada97acca11d0d460864c8280 --- /dev/null +++ b/nifty5/minimization/kl_energy.py @@ -0,0 +1,57 @@ +from __future__ import absolute_import, division, print_function + +from ..compat import * +from .energy import Energy +from ..linearization import Linearization +from ..operators.scaling_operator import ScalingOperator +from ..operators.block_diagonal_operator import BlockDiagonalOperator +from .. import utilities + + +class KL_Energy(Energy): + def __init__(self, position, h, nsamp, constants=[], _samples=None, + want_metric=False): + super(KL_Energy, self).__init__(position) + self._h = h + self._constants = constants + self._want_metric = want_metric + if _samples is None: + met = h(Linearization.make_var(position, True)).metric + _samples = tuple(met.draw_sample(from_inverse=True) + for _ in range(nsamp)) + self._samples = _samples + if len(constants) == 0: + tmp = Linearization.make_var(position, want_metric) + else: + ops = [ScalingOperator(0. if key in constants else 1., dom) + for key, dom in position.domain.items()] + bdop = BlockDiagonalOperator(position.domain, tuple(ops)) + tmp = Linearization(position, bdop, want_metric=want_metric) + mymap = map(lambda v: self._h(tmp+v), self._samples) + tmp = utilities.my_sum(mymap) * (1./len(self._samples)) + self._val = tmp.val.local_data[()] + self._grad = tmp.gradient + self._metric = tmp.metric + + def at(self, position): + return KL_Energy(position, self._h, 0, self._constants, self._samples, + self._want_metric) + + @property + def value(self): + return self._val + + @property + def gradient(self): + return self._grad + + def apply_metric(self, x): + return self._metric(x) + + @property + def metric(self): + return self._metric + + @property + def samples(self): + return self._samples diff --git a/nifty5/minimization/quadratic_energy.py b/nifty5/minimization/quadratic_energy.py index a0949adb1c429d351c8b1959cdfaa42d255f00e7..254bc5ab3d275ec6da9f4ef143e366e73b2d7899 100644 --- a/nifty5/minimization/quadratic_energy.py +++ b/nifty5/minimization/quadratic_energy.py @@ -77,3 +77,6 @@ class QuadraticEnergy(Energy): @property def metric(self): return self._A + + def apply_metric(self, x): + return self._A(x) diff --git a/nifty5/minimization/scipy_minimizer.py b/nifty5/minimization/scipy_minimizer.py index bb94f66490606511fadcb90a02b924ba94a239ed..49e7a4ddaf5d23001ed628023a870550a904659e 100644 --- a/nifty5/minimization/scipy_minimizer.py +++ b/nifty5/minimization/scipy_minimizer.py @@ -93,7 +93,7 @@ class _MinHelper(object): def hessp(self, x, p): self._update(x) - res = self._energy.metric(_toField(p, self._energy.position)) + res = self._energy.apply_metric(_toField(p, self._energy.position)) return _toArray_rw(res) diff --git a/nifty5/operators/energy_operators.py b/nifty5/operators/energy_operators.py index b2449755f96316c3061b0826a16b86e82a026371..55de137012c2f9d5f64d71ca652924407ee8552a 100644 --- a/nifty5/operators/energy_operators.py +++ b/nifty5/operators/energy_operators.py @@ -42,7 +42,7 @@ class SquaredNormOperator(EnergyOperator): if isinstance(x, Linearization): val = Field.scalar(x.val.vdot(x.val)) jac = VdotOperator(2*x.val)(x.jac) - return Linearization(val, jac) + return x.new(val, jac) return Field.scalar(x.vdot(x)) @@ -59,7 +59,7 @@ class QuadraticFormOperator(EnergyOperator): t1 = self._op(x.val) jac = VdotOperator(t1)(x.jac) val = Field.scalar(0.5*x.val.vdot(t1)) - return Linearization(val, jac) + return x.new(val, jac) return Field.scalar(0.5*x.vdot(self._op(x))) @@ -91,7 +91,7 @@ class GaussianEnergy(EnergyOperator): def apply(self, x): residual = x if self._mean is None else x-self._mean res = self._op(residual).real - if not isinstance(x, Linearization): + if not isinstance(x, Linearization) or not x.want_metric: return res metric = SandwichOperator.make(x.jac, self._icov) return res.add_metric(metric) @@ -107,6 +107,8 @@ class PoissonianEnergy(EnergyOperator): res = x.sum() - x.log().vdot(self._d) if not isinstance(x, Linearization): return Field.scalar(res) + if not x.want_metric: + return res metric = SandwichOperator.make(x.jac, makeOp(1./x.val)) return res.add_metric(metric) @@ -136,6 +138,8 @@ class BernoulliEnergy(EnergyOperator): v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d) if not isinstance(x, Linearization): return Field.scalar(v) + if not x.want_metric: + return v met = makeOp(1./(x.val*(1.-x.val))) met = SandwichOperator.make(x.jac, met) return v.add_metric(met) @@ -149,11 +153,11 @@ class Hamiltonian(EnergyOperator): self._domain = lh.domain def apply(self, x): - if self._ic_samp is None or not isinstance(x, Linearization): + if (self._ic_samp is None or not isinstance(x, Linearization) or + not x.want_metric): return self._lh(x)+self._prior(x) else: - lhx = self._lh(x) - prx = self._prior(x) + lhx, prx = self._lh(x), self._prior(x) mtr = SamplingEnabler(lhx.metric, prx.metric.inverse, self._ic_samp, prx.metric.inverse) return (lhx+prx).add_metric(mtr) diff --git a/nifty5/operators/linear_operator.py b/nifty5/operators/linear_operator.py index 26a0cf81dc0dfac484ce06f2ba567158198c09c6..aa330c2f4ccede83ad73de5b72810da71ed542ba 100644 --- a/nifty5/operators/linear_operator.py +++ b/nifty5/operators/linear_operator.py @@ -175,7 +175,7 @@ class LinearOperator(Operator): return self.apply(x, self.TIMES) from ..linearization import Linearization if isinstance(x, Linearization): - return Linearization(self(x._val), self(x._jac)) + return x.new(self(x._val), self(x._jac)) return self.__matmul__(x) def times(self, x): diff --git a/nifty5/operators/operator.py b/nifty5/operators/operator.py index 73ece15e64ef3e1f64b8d8e27f75e09f4ced4f89..13b7e6fb7bfb1e27f12e3f292744b239f868b8b5 100644 --- a/nifty5/operators/operator.py +++ b/nifty5/operators/operator.py @@ -144,11 +144,12 @@ class _OpProd(Operator): v2 = v.extract(self._op2.domain) if not lin: return self._op1(v1) * self._op2(v2) - lin1 = self._op1(Linearization.make_var(v1)) - lin2 = self._op2(Linearization.make_var(v2)) + wm = x.want_metric + lin1 = self._op1(Linearization.make_var(v1, wm)) + lin2 = self._op2(Linearization.make_var(v2, wm)) op = (makeOp(lin1._val)(lin2._jac))._myadd( makeOp(lin2._val)(lin1._jac), False) - return Linearization(lin1._val*lin2._val, op(x.jac)) + return lin1.new(lin1._val*lin2._val, op(x.jac)) class _OpSum(Operator): @@ -168,10 +169,11 @@ class _OpSum(Operator): res = None if not lin: return self._op1(v1).unite(self._op2(v2)) - lin1 = self._op1(Linearization.make_var(v1)) - lin2 = self._op2(Linearization.make_var(v2)) + wm = x.want_metric + lin1 = self._op1(Linearization.make_var(v1, wm)) + lin2 = self._op2(Linearization.make_var(v2, wm)) op = lin1._jac._myadd(lin2._jac, False) - res = Linearization(lin1._val+lin2._val, op(x.jac)) + res = lin1.new(lin1._val+lin2._val, op(x.jac)) if lin1._metric is not None and lin2._metric is not None: res = res.add_metric(lin1._metric + lin2._metric) return res diff --git a/nifty5/plotting/plot.py b/nifty5/plotting/plot.py index c2e0b91ccd3c580ea3f63a9a9d89646ed6156458..6e414f5bc5760b6bdb67d12331f0418431640131 100644 --- a/nifty5/plotting/plot.py +++ b/nifty5/plotting/plot.py @@ -267,7 +267,6 @@ class Plot(object): self._plots = [] self._kwargs = [] - def add(self, f, **kwargs): """Add a figure to the current list of plots. @@ -303,7 +302,6 @@ class Plot(object): self._plots.append(f) self._kwargs.append(kwargs) - def output(self, **kwargs): """Plot the accumulated list of figures. diff --git a/test/test_minimization/test_minimizers.py b/test/test_minimization/test_minimizers.py index 7b6df9e777c3386a8d7eed98985e91ea2b07e72e..5ec52853538d3e488fda8bc69277a21e2a120e96 100644 --- a/test/test_minimization/test_minimizers.py +++ b/test/test_minimization/test_minimizers.py @@ -113,6 +113,12 @@ class Test_Minimizers(unittest.TestCase): iteration_limit=1000) return ift.InversionEnabler(RBCurv(self._position), t1) + def apply_metric(self, x): + inp = x.to_global_data_rw() + pos = self._position.to_global_data_rw() + return ift.Field.from_global_data( + space, rosen_hess_prod(pos, inp)) + try: minimizer = eval(minimizer) energy = RBEnergy(position=starting_point) @@ -145,12 +151,11 @@ class Test_Minimizers(unittest.TestCase): return ift.Field.full(self.position.domain, 2*x*np.exp(-(x**2))) - @property - def metric(self): - x = self.position.to_global_data()[0] - v = (2 - 4*x*x)*np.exp(-x**2) + def apply_metric(self, x): + p = self.position.to_global_data()[0] + v = (2 - 4*p*p)*np.exp(-p**2) return ift.DiagonalOperator( - ift.Field.full(self.position.domain, v)) + ift.Field.full(self.position.domain, v))(x) try: minimizer = eval(minimizer) @@ -190,6 +195,12 @@ class Test_Minimizers(unittest.TestCase): return ift.DiagonalOperator( ift.Field.full(self.position.domain, v)) + def apply_metric(self, x): + p = self.position.to_global_data()[0] + v = np.cosh(p) + return ift.DiagonalOperator( + ift.Field.full(self.position.domain, v))(x) + try: minimizer = eval(minimizer) energy = CoshEnergy(position=starting_point)