Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
3d3e41dc
Commit
3d3e41dc
authored
Nov 10, 2019
by
Philipp Frank
Browse files
utility functions for fluctuations
parent
e01ad3a5
Pipeline
#63362
passed with stages
in 5 minutes and 48 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
demos/multi_amplitudes_consistency.py
View file @
3d3e41dc
...
@@ -5,9 +5,11 @@ np.random.seed(42)
...
@@ -5,9 +5,11 @@ np.random.seed(42)
def
testAmplitudesConsistency
(
seed
,
sspace
):
def
testAmplitudesConsistency
(
seed
,
sspace
):
offset_std
=
40
offset_std
=
30
intergated_fluct_std0
=
10.
intergated_fluct_std0
=
.
003
intergated_fluct_std1
=
2.
intergated_fluct_std1
=
0.1
nsam
=
1000
hspace
=
sspace
.
get_default_codomain
()
hspace
=
sspace
.
get_default_codomain
()
target0
=
ift
.
PowerSpace
(
hspace
)
target0
=
ift
.
PowerSpace
(
hspace
)
...
@@ -23,51 +25,29 @@ def testAmplitudesConsistency(seed, sspace):
...
@@ -23,51 +25,29 @@ def testAmplitudesConsistency(seed, sspace):
-
4
,
1.
,
'freq'
)
-
4
,
1.
,
'freq'
)
op
=
fa
.
finalize
(
offset_std
,
1E-8
,
''
)
op
=
fa
.
finalize
(
offset_std
,
1E-8
,
''
)
flucts
=
[
intergated_fluct_std0
,
intergated_fluct_std1
]
samples
=
[
ift
.
from_random
(
'normal'
,
op
.
domain
)
for
_
in
range
(
nsam
)]
tot_flm
,
totflsig
=
fa
.
effective_total_fluctuation
(
flucts
,
[
1E-8
,
1E-8
])
tot_flm
,
_
=
fa
.
stats
(
fa
.
total_fluctuation
,
samples
)
offset_std
,
_
=
fa
.
stats
(
fa
.
amplitude_total_offset
,
samples
)
space
=
op
.
target
intergated_fluct_std0
,
_
=
fa
.
stats
(
fa
.
average_fluctuation
(
0
),
samples
)
totaltoalvol
=
1.
intergated_fluct_std1
,
_
=
fa
.
stats
(
fa
.
average_fluctuation
(
1
),
samples
)
for
s
in
space
[:]:
totaltoalvol
*=
s
.
total_volume
slice_fluct_std0
,
_
=
fa
.
stats
(
fa
.
slice_fluctuation
(
0
),
samples
)
slice_fluct_std1
,
_
=
fa
.
stats
(
fa
.
slice_fluctuation
(
1
),
samples
)
nsam
=
1000
sams
=
[
op
(
s
)
for
s
in
samples
]
zm_std_mean
=
0.
fluct_total
=
fa
.
total_fluctuation_realized
(
sams
)
fluct_space
=
0.
fluct_space
=
fa
.
average_fluctuation_realized
(
sams
,
0
)
fluct_freq
=
0.
fluct_freq
=
fa
.
average_fluctuation_realized
(
sams
,
1
)
fluct_total
=
0.
zm_std_mean
=
fa
.
offset_amplitude_realized
(
sams
)
sl_fluct_space
=
fa
.
slice_fluctuation_realized
(
sams
,
0
)
for
i
in
range
(
nsam
):
sl_fluct_freq
=
fa
.
slice_fluctuation_realized
(
sams
,
1
)
x
=
ift
.
from_random
(
'normal'
,
op
.
domain
)
res
=
op
(
x
)
zm
=
res
.
integrate
()
/
totaltoalvol
zm2
=
res
.
mean
()
fl
=
((
res
-
zm
)
**
2
).
integrate
()
/
totaltoalvol
zm_std_mean
+=
zm
**
2
fluct_total
+=
fl
r
=
res
.
integrate
(
1
)
/
fsspace
.
total_volume
r0
=
r
.
integrate
()
/
sspace
.
total_volume
tm
=
((
r
-
r0
)
**
2
).
integrate
()
/
sspace
.
total_volume
fluct_space
+=
tm
fr
=
res
.
integrate
(
0
)
/
sspace
.
total_volume
fr0
=
fr
.
integrate
()
/
fsspace
.
total_volume
ftm
=
((
fr
-
fr0
)
**
2
).
integrate
()
/
fsspace
.
total_volume
fluct_freq
+=
ftm
fluct_total
=
np
.
sqrt
(
fluct_total
/
nsam
)
fluct_space
=
np
.
sqrt
(
fluct_space
/
nsam
)
fluct_freq
=
np
.
sqrt
(
fluct_freq
/
nsam
)
zm_std_mean
=
np
.
sqrt
(
zm_std_mean
/
nsam
)
np
.
testing
.
assert_allclose
(
offset_std
,
zm_std_mean
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
offset_std
,
zm_std_mean
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std0
,
fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std0
,
fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std1
,
fluct_freq
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
tot_flm
,
fluct_total
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
tot_flm
,
fluct_total
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
slice_fluct_std0
,
sl_fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
slice_fluct_std1
,
sl_fluct_freq
,
rtol
=
0.5
)
print
(
"Expected offset Std: "
+
str
(
offset_std
))
print
(
"Expected offset Std: "
+
str
(
offset_std
))
print
(
"Estimated offset Std: "
+
str
(
zm_std_mean
))
print
(
"Estimated offset Std: "
+
str
(
zm_std_mean
))
...
@@ -79,6 +59,14 @@ def testAmplitudesConsistency(seed, sspace):
...
@@ -79,6 +59,14 @@ def testAmplitudesConsistency(seed, sspace):
print
(
"Expected integrated fluct. frequency Std: "
+
print
(
"Expected integrated fluct. frequency Std: "
+
str
(
intergated_fluct_std1
))
str
(
intergated_fluct_std1
))
print
(
"Estimated integrated fluct. frequency Std: "
+
str
(
fluct_freq
))
print
(
"Estimated integrated fluct. frequency Std: "
+
str
(
fluct_freq
))
print
(
"Expected slice fluct. space Std: "
+
str
(
slice_fluct_std0
))
print
(
"Estimated slice fluct. space Std: "
+
str
(
sl_fluct_space
))
print
(
"Expected slice fluct. frequency Std: "
+
str
(
slice_fluct_std1
))
print
(
"Estimated slice fluct. frequency Std: "
+
str
(
sl_fluct_freq
))
print
(
"Expected total fluct. Std: "
+
str
(
tot_flm
))
print
(
"Expected total fluct. Std: "
+
str
(
tot_flm
))
print
(
"Estimated total fluct. Std: "
+
str
(
fluct_total
))
print
(
"Estimated total fluct. Std: "
+
str
(
fluct_total
))
...
...
nifty5/library/correlated_fields.py
View file @
3d3e41dc
...
@@ -32,6 +32,7 @@ from ..operators.operator import Operator
...
@@ -32,6 +32,7 @@ from ..operators.operator import Operator
from
..operators.simple_linear_operators
import
VdotOperator
,
ducktape
from
..operators.simple_linear_operators
import
VdotOperator
,
ducktape
from
..operators.value_inserter
import
ValueInserter
from
..operators.value_inserter
import
ValueInserter
from
..sugar
import
from_global_data
,
full
,
makeDomain
from
..sugar
import
from_global_data
,
full
,
makeDomain
from
..probing
import
StatCalculator
def
_lognormal_moments
(
mean
,
sig
):
def
_lognormal_moments
(
mean
,
sig
):
...
@@ -207,12 +208,14 @@ class _Amplitude(Operator):
...
@@ -207,12 +208,14 @@ class _Amplitude(Operator):
adder
=
Adder
(
from_global_data
(
target
,
mask
))
adder
=
Adder
(
from_global_data
(
target
,
mask
))
op
=
adder
@
((
expander
@
fluctuations
)
*
normal_ampl
)
op
=
adder
@
((
expander
@
fluctuations
)
*
normal_ampl
)
self
.
apply
=
op
.
apply
self
.
apply
=
op
.
apply
self
.
fluctuation_amplitude
=
fluctuations
self
.
_domain
,
self
.
_target
=
op
.
domain
,
op
.
target
self
.
_domain
,
self
.
_target
=
op
.
domain
,
op
.
target
class
CorrelatedFieldMaker
:
class
CorrelatedFieldMaker
:
def
__init__
(
self
):
def
__init__
(
self
):
self
.
_a
=
[]
self
.
_a
=
[]
self
.
_azm
=
None
def
add_fluctuations
(
self
,
def
add_fluctuations
(
self
,
target
,
target
,
...
@@ -256,6 +259,7 @@ class CorrelatedFieldMaker:
...
@@ -256,6 +259,7 @@ class CorrelatedFieldMaker:
def
finalize_from_op
(
self
,
zeromode
,
prefix
=
''
):
def
finalize_from_op
(
self
,
zeromode
,
prefix
=
''
):
assert
isinstance
(
zeromode
,
Operator
)
assert
isinstance
(
zeromode
,
Operator
)
self
.
_azm
=
zeromode
hspace
=
makeDomain
([
dd
.
target
[
0
].
harmonic_partner
for
dd
in
self
.
_a
])
hspace
=
makeDomain
([
dd
.
target
[
0
].
harmonic_partner
for
dd
in
self
.
_a
])
foo
=
np
.
ones
(
hspace
.
shape
)
foo
=
np
.
ones
(
hspace
.
shape
)
zeroind
=
len
(
hspace
.
shape
)
*
(
0
,)
zeroind
=
len
(
hspace
.
shape
)
*
(
0
,)
...
@@ -305,17 +309,91 @@ class CorrelatedFieldMaker:
...
@@ -305,17 +309,91 @@ class CorrelatedFieldMaker:
def
amplitudes
(
self
):
def
amplitudes
(
self
):
return
self
.
_a
return
self
.
_a
def
effective_total_fluctuation
(
self
,
@
property
fluctuations_means
,
def
amplitude_total_offset
(
self
):
fluctuations_stddevs
,
return
self
.
_azm
nsamples
=
100
):
namps
=
len
(
fluctuations_means
)
@
property
xis
=
np
.
random
.
normal
(
size
=
namps
*
nsamples
).
reshape
((
namps
,
nsamples
))
def
total_fluctuation
(
self
):
q
=
np
.
ones
(
nsamples
)
if
len
(
self
.
_a
)
==
0
:
for
i
in
range
(
len
(
fluctuations_means
)):
raise
(
NotImplementedError
)
m
,
sig
=
_lognormal_moments
(
fluctuations_means
[
i
],
if
len
(
self
.
_a
)
==
1
:
fluctuations_stddevs
[
i
])
return
self
.
_a
[
0
].
fluctuation_amplitude
f
=
np
.
exp
(
m
+
sig
*
xis
[
i
])
q
=
1.
q
*=
(
1.
+
f
**
2
)
for
a
in
self
.
_a
:
q
=
np
.
sqrt
(
q
-
1.
)
fl
=
a
.
fluctuation_amplitude
return
np
.
mean
(
q
),
np
.
std
(
q
)
q
=
q
*
(
Adder
(
full
(
fl
.
target
,
1.
))
@
fl
**
2
)
return
(
Adder
(
full
(
q
.
target
,
-
1.
))
@
q
).
sqrt
()
def
slice_fluctuation
(
self
,
space
):
if
len
(
self
.
_a
)
==
0
:
raise
(
NotImplementedError
)
assert
space
<
len
(
self
.
_a
)
if
len
(
self
.
_a
)
==
1
:
return
self
.
_a
[
0
].
fluctuation_amplitude
q
=
1.
for
j
in
range
(
len
(
self
.
_a
)):
fl
=
self
.
_a
[
j
].
fluctuation_amplitude
if
j
==
space
:
q
=
q
*
fl
**
2
else
:
q
=
q
*
(
Adder
(
full
(
fl
.
target
,
1.
))
@
fl
**
2
)
return
q
.
sqrt
()
def
average_fluctuation
(
self
,
space
):
if
len
(
self
.
_a
)
==
0
:
raise
(
NotImplementedError
)
assert
space
<
len
(
self
.
_a
)
if
len
(
self
.
_a
)
==
1
:
return
self
.
_a
[
0
].
fluctuation_amplitude
return
self
.
_a
[
space
].
fluctuation_amplitude
def
offset_amplitude_realized
(
self
,
samples
):
res
=
0.
for
s
in
samples
:
res
+=
s
.
mean
()
**
2
return
np
.
sqrt
(
res
/
len
(
samples
))
def
total_fluctuation_realized
(
self
,
samples
):
res
=
0.
for
s
in
samples
:
res
=
res
+
(
s
-
s
.
mean
())
**
2
res
=
res
/
len
(
samples
)
return
np
.
sqrt
(
res
.
mean
())
def
average_fluctuation_realized
(
self
,
samples
,
space
):
ldom
=
len
(
samples
[
0
].
domain
)
assert
space
<
ldom
if
ldom
==
1
:
return
self
.
total_fluctuation_realized
(
samples
)
spaces
=
()
for
i
in
range
(
ldom
):
if
i
!=
space
:
spaces
+=
(
i
,)
res
=
0.
for
s
in
samples
:
r
=
s
.
mean
(
spaces
)
res
=
res
+
(
r
-
r
.
mean
())
**
2
res
=
res
/
len
(
samples
)
return
np
.
sqrt
(
res
.
mean
())
def
slice_fluctuation_realized
(
self
,
samples
,
space
):
ldom
=
len
(
samples
[
0
].
domain
)
assert
space
<
ldom
if
ldom
==
1
:
return
self
.
total_fluctuation_realized
(
samples
)
res1
=
0.
res2
=
0.
for
s
in
samples
:
res1
=
res1
+
s
**
2
res2
=
res2
+
s
.
mean
(
space
)
**
2
res1
=
res1
/
len
(
samples
)
res2
=
res2
/
len
(
samples
)
res
=
res1
.
mean
()
-
res2
.
mean
()
return
np
.
sqrt
(
res
)
def
stats
(
self
,
op
,
samples
):
sc
=
StatCalculator
()
for
s
in
samples
:
sc
.
add
(
op
(
s
.
extract
(
op
.
domain
)))
return
sc
.
mean
.
to_global_data
(),
sc
.
var
.
sqrt
().
to_global_data
()
\ No newline at end of file
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment